SODA

Searching for Gas Turbine Maintenance Schedules

Bohlin, Markus and Doganay, Kivanc and Kreuger, Per and Steinert, Rebecca and Wärja, Mathias (2010) Searching for Gas Turbine Maintenance Schedules. AI Magazine, 31 (1). pp. 21-36.

Full text not available from this repository.

Official URL: http://www.aaai.org/ojs/index.php/aimagazine/artic...

Abstract

Preventive maintenance schedules occurring in industry are often suboptimal with regard to maintenance coal-location, loss-of-production costs and availability. We describe the implementation and deployment of a software decision support tool for the maintenance planning of gas turbines, with the goal of reducing the direct maintenance costs and the often costly production losses during maintenance downtime. The optimization problem is formally defined, and we argue that the feasibility version is NP-complete. We outline a heuristic algorithm that can quickly solve the problem for practical purposes and validate the approach on a real-world scenario based on an oil production facility. We also compare the performance of our algorithm with results from using integer programming, and discuss the deployment of the application. The experimental results indicate that downtime reductions up to 65% can be achieved, compared to traditional preventive maintenance. In addition, the use of our tool is expected to improve availability with up to 1% and reduce the number of planned maintenance days by 12%. Compared to a integer programming approach, our algorithm is not optimal, but is much faster and produces results which are useful in practice. Our test results and SIT AB’s estimates based< on operational use both indicate that significant savings can be achieved by using our software tool, compared to maintenance plans with fixed intervals.

Item Type:Article
ID Code:4016
Deposited By:Markus Bohlin
Deposited On:08 Sep 2010 11:29
Last Modified:08 Sep 2010 11:29

Repository Staff Only: item control page