Deciding Bisimulation Equivalences for a Class of Non-Finite-State Programs

by
Bengt Jonsson and Joachim Parrow
Deciding Bisimulation Equivalences for a Class of Non-Finite-State Programs*

Bengt Jonsson and Joachim Parrow †

SICS Research Report SICS/R-89/8908
August 1989

Abstract

Traditionally, many automatic program verification techniques are applicable only to finite-state programs. In this paper we show how to extend some verification techniques to infinite-state programs that may read, store, and write data but not perform any other computations. We present algorithms for deciding strong equivalence and observation equivalence, defined by bisimulations (as in CCS), between such programs. These equivalences have major applications in verification of communication protocols. The equivalence problems are shown to be NP-hard in the size of the programs.

*This Research report is a revised and extended version of a paper that has appeared under the same title in the Proceedings of the 6th Symposium on Theoretical Aspects of Computer Science, Paderborn, FRG, February 1989, published as Lecture Notes in Computer Science Vol. 349, Springer Verlag, pp. 421-433.

†Address: SICS, Box 1263, S-164 28 Kista, SWEDEN, E-mail: bengt@sics.se, joachim@sics.se
1 Introduction

One of the advantages of producing formal specifications of software systems is the possibility to analyze and verify a system in a rigorous way. In this paper we focus on the particular verification problem of proving two programs equivalent. Equivalence is an often used criterion for a correct refinement of a specification, or for a correct optimization of a program. Our contribution is to extend the applicability of algorithms for deciding equivalence.

In general, most interesting verification problems are undecidable. Existing verification algorithms cover subclasses of programs; one prominent such subclass is the finite-state programs, consisting of programs which can only reach a finite number of distinct states during execution. Verification algorithms are usually based on state space exploration: first construct the set of states that the program can reach, and then analyze this set. Such algorithms exist for proving absence of deadlock, proving properties expressed in propositional temporal logic, proving trace equivalence and bisimulation equivalence etc. These verifications have been especially important for communication protocols and hardware structures.

Many important programs such as communication protocols, memories, bounded buffers, queues, and stacks are not finite-state. One reason for this is that they operate on data values from a potentially infinite domain: an input operation can result in an infinite number of different states corresponding to the infinitely many data values. The limitations of verification algorithms to finite-state programs has lead verifiers of communication protocols to verify only the control aspect (this is usually finite-state) and ignore the transfer of data (which is not finite-state if the data domain is infinite). The contribution of this paper is to extend the applicability of verification algorithms to a class of non-finite-state programs.

We shall consider programs, expressed in a dialect of CCS ([Mil80]), that operate on data values from a potentially infinite set of data but which never perform any computations on these data. Such programs may read data values from input ports and subsequently write them on output ports. They may however not compute functions on the data values, nor base any decisions on tests on data values. Such programs are data-independent, in the sense that their behaviors are independent of the actual data domain on which they operate. It turns out that communication protocols, bounded buffers, queues, stacks, and memories are often data-independent.

We shall consider the problem of deciding observation equivalence, as defined in CCS. Observation equivalence has been widely used as a correctness criterion, e.g. in verification of communication protocols. Observation equivalence is strictly stronger than other equivalences which have been suggested as intuitively appealing, can be decided efficiently for finite-state programs, and has a simple theory.

Our main result is an algorithm for deciding observation equivalence between programs. The algorithm transforms an equivalence problem between two data-independent programs into an equivalence problem between two finite-state programs, for which there is a polynomial time decision procedure ([KS83]). The main idea behind the transformation is that if a program is data-independent then it should be irrelevant that there are an
infinite number of different data values, since all data values are treated identically by
the program. Thus we can simulate the program on a finite set of data values. In the
worst case, this results in an exponential blowup of the program size. In the paper, we
also prove that the equivalence problem is NP-hard for the class of programs that we
consider.

The rest of the paper is organized as follows. In Section 2 we comment on related work.
Section 3 defines the syntax and semantics of programs, and the concept of bisimulation
equivalence. In Section 4 we present algorithms for deciding strong equivalence and observ-
ation equivalence, and Section 5 contains a result on the complexity of these problems.
In Section 6 we indicate an extension to parallel programs, and finally Section 7 contains
a small example of a verification which is made possible with our algorithm. Some of the
longer proofs are collected in an appendix.

2 Related Work

The problem of extending finite-state verification algorithms to non-finite-state programs
has been considered by Wolper ([Wol86]) in a different context: that of verifying that a
program satisfies a temporal logic specification. Wolper shows how to reformulate this
problem to a similar one over a smaller, finite data domain. The verification problem can
then be handled by standard finite-state techniques (e.g., [CESS3], [VW86]). Wolper gives
an extensional definition of what it means for a program to be data-independent. This
definition admits more programs than those that we consider, and (as Wolper remarks)
makes the problem of checking whether a program is data-independent undecidable. We
consider programs that from their syntactical definitions can easily be seen to be data-
independent. Another difference between our work and that of Wolper is that we consider
the problem of deciding equivalence between programs.

Our methods are related to ideas in symbolic execution ([BJ78]): to execute the pro-
gram on symbolic data values. Brand and Joyner have used this technique to verify
communication protocols, not automatically, but with substantial mechanical support
([BJ82]).

Observation equivalence has been widely used as a correctness criterion in verification
of communication protocols, ([BK84, Koo85, LM87, Par88, SFD85, Ver86]), and other
parallel systems ([DG83]). Other equivalences for nondeterministic programs have been
explored in many papers; examples include [BHR84, NH84, Abr87, BIM88]. Algorithms
for the equivalence problems in the finite-state case have been presented by Kanellakis
and Smolka ([KS83]). Our work extends the applicability of their results.

A more remotely related area is the study of other equivalence problems for sequential
programs and for program schemas. Jones and Muchnik ([JM77]), for instance, consider
the problem of equivalence between generalized sequential machines that can test for
equivalence between data values.
3 Preliminaries

3.1 Programs

We shall define a language for expressing nondeterministic and parallel programs that from their syntactical definitions are obviously data-independent. The primitives of this language include input, output, nondeterminism, parallelism, and recursion. We defer the primitive for parallelism to Section 6 in order to simplify the presentation of our main ideas. Our notation is taken from CCS ([Mil80]), with the modification that input is denoted by a question mark (?) and output by an exclamation mark (!).

We assume the following (pairwise disjoint) sets

- a set of ports, ranged over by \(a, b, c, \ldots \)
- a set of variables, ranged over by \(x, y, \ldots \)
- an infinite set \(D \) of data values, ranged over by \(d, d_1, d_2, \ldots \)
- a finite set of identifiers, ranged over by \(Id \). Each identifier has a nonnegative arity.

A value expression is either a variable or a data value. We will use \(e, e_1, \ldots \) to range over value expressions. Normally, value expressions would represent the results of computations on data. Since we restrict attention to programs which only perform trivial computations (i.e., computations which return constant values or copies of values received as input), variables and data values will be the only relevant value expressions.

The set of behavior expressions, ranged over by \(A, B, \ldots \), is defined recursively as follows:

\[
A ::= a?x.A \mid a!e.A \mid \sum_{i \in I} A_i \mid Id(e_1, \ldots, e_n)
\]

We assume in \(Id(e_1, \ldots, e_n) \) that \(Id \) has arity \(n \). Since we are only interested in syntactically finite programs we also assume that the index set \(I \) in \(\sum_{i \in I} A_i \) is finite, and we will sometimes use the notation \(A_1 + \cdots + A_n \) for \(\sum_{i \in \{1, \ldots, n\}} A_i \). For the special case where \(I \) is empty we use the symbol \(0 \), i.e., \(0 = \sum_{i \in \emptyset} A_i \).

An occurrence of a variable \(x \) is bound in \(A \) if it occurs within a subexpression of the form \(a?x.A' \). Let \(FV(A) \), the free variables of \(A \), denote the set of variables in \(A \) that have an occurrence which is not bound. A program is a behavior expression with no free variables.

3.2 Operational Semantics

An action (or communication event) is of the form \(a?d \) or \(ald \). The action \(a?d \) is an input action, and represents the reception of the data value \(d \) in a communication on port \(a \). The action \(ald \) is an output action, and represents the transmission of the data value \(d \) in a communication on port \(a \). We use \(\mu \) to range over actions.
Intuitively, the program $a?x.A$ can first perform an action $a?d$ and thereafter behave like A where x is replaced by d. The program $ald.A$ can first perform the action ald and thereafter behave like A. The program $\sum_{i \in I} A_i$ can behave like either of A_i, hence the program 0 cannot perform any actions.

We assume that every identifier Id of arity n is defined by a clause

$$Id(x_1, \ldots, x_n) \iff A$$

where A is a behavior expression with $FV(A) \subseteq \{x_1, \ldots, x_n\}$, and x_1, \ldots, x_n are distinct variables. Note that this allows recursive definitions such as

$$MemoryCell(x) \iff read!x . MemoryCell(x) + write?y . MemoryCell(y)$$

The intuition is that if Id is defined by $Id(x_1, \ldots, x_n) \iff A$, then the program $Id(d_1, \ldots, d_n)$ behaves precisely as A where x_i is replaced by d_i for all i.

Formally, behaviors are defined by a transition relation. A transition relation \rightarrow is a set of triples of the form $A \xrightarrow{\mu} A'$ where A and A' are programs, and μ is an action. Intuitively, the transition $A \xrightarrow{\mu} A'$ states that the program A can perform the action μ and thereby become the program A'. We define the operational semantics of programs by the transition relation \rightarrow_M, which is essentially the same as that defined by Milner in [Mil80] (the subscript M refers to Milner).

In the following, substitution of e for x in A, written $A[e/x]$, is defined in the usual way, using renaming of bound variables when necessary to avoid captures. Similarly, $A[e_1, \ldots, e_n/x_1, \ldots, x_n]$ means substituting each x_i with e_i (here the x_i's must be distinct).

The relation $A \xrightarrow{\mu} M A'$ is defined as the least relation satisfying the following rules:

$$\text{OUT}_M : \quad ald.A \xrightarrow{ald} M A$$

$$\text{IN}_M : \quad a?x.A \xrightarrow{a?d} M A[d/x] \quad \text{for all } d \in D$$

$$\text{SUM}_M : \quad A_j \xrightarrow{\mu} M A' \quad \sum_{i \in I} A_i \xrightarrow{\mu} M A' \quad \text{for all } j \in I$$

$$\text{ID}_M : \quad A[d_1, \ldots, d_n/x_1, \ldots, x_n] \xrightarrow{\mu} M A' \quad \text{if } Id(x_1, \ldots, x_n) \iff A$$

3.3 Bisimulations

In this paper, we shall give a method for deciding equivalences as defined by Milner ([Mil83]). We will begin with the equivalence called "strong equivalence" in [Mil80], and proceed to "observation equivalence" in Section 4.3. Both equivalences are defined in terms of bisimulations. Since we will treat many definitions of bisimulation which only
differ in the transition relation that they use, it will be convenient to define bisimulation parametrized on a transition relation.

Let \rightarrow be a transition relation. A binary relation \sim on the set of programs is a \rightarrow-bisimulation if $A \sim B$ implies that for all μ:

- if $A \xrightarrow{\mu} A'$ then there is a B' such that $B \xrightarrow{\mu} B'$ and $A' \sim B'$.

- if $B \xrightarrow{\mu} B'$ then there is an A' such that $A \xrightarrow{\mu} A'$ and $A' \sim B'$.

Two programs A and B are \rightarrow-equivalent, if there is a \rightarrow-bisimulation \sim such that $A \sim B$. In particular \rightarrow_M-equivalence, which we will also call M-equivalence and denote by \sim_M, corresponds to “strong equivalence” in [Mil80]. In Section 4.3, we will define observation equivalence by an analogous definition.

4 Deciding Bisimulation Equivalence

4.1 Schematic Names

Let $ST(A, \rightarrow)$, the states of a program A with respect to a transition relation \rightarrow, be the set of programs A' that can be reached from A via a sequence $A \xrightarrow{\mu_1} \cdots \xrightarrow{\mu_k} A'$ of transitions. A program A is finite-state with respect to \rightarrow iff $ST(A, \rightarrow)$ is finite. For the class of programs which are finite-state with respect to \rightarrow the problem of \rightarrow-equivalence is decidable. Kannellakis and Smolka [KS83] have presented an algorithm which runs in polynomial time.

Unfortunately, this result does not apply directly to \rightarrow_M since our programs are not always finite-state. The reason for this is that programs of form $a?x.A$ may do infinitely many actions resulting in infinitely many different states, corresponding to the infinitely many data values that may be received.

In this paper, we shall present an alternative “finitary” transition relation \rightarrow_F which makes programs finite-state by only allowing one action for each program of form $a?x.A$. The idea behind this transition relation is related to the idea of using schematic names for data values in analysis by symbolic execution ([BJJ78]). Our definition will ensure that a program $a?x.A$ can only perform one transition, of form $a?x.A \xrightarrow{a?y} A[v/x]$, where v is a schematic name. The difficulty with this approach is to determine, for each program of form $a?x.A$, the appropriate schematic name v.

On the one hand, different constructs of the form $a?x$ in a program sometimes require different schematic names, otherwise information about the relationship between input and output actions may be lost. For instance, we must be able to distinguish the programs $A = a?x . a?y . B$ and $A' = a?y . a?x . B$ if the behavior expression B treats the variables x and y differently.

On the other hand, we cannot grant each input transition a unique schematic name; in that case even the simple agent Id defined by $Id \Leftarrow a?x . a!x . Id$ would have an infinite state space (at each recurrence of Id a new schematic name would be needed).
We cannot even use one schematic name per variable, since we want \(Id\) above to have the same transitions as \(Id'\) where \(Id' \equiv a?y.\text{aly} . Id'\) which only differs from \(Id\) in the name of the bound variable. A major technical idea in this paper is to choose the schematic names for input in an appropriate way.

In the following we assume a set \(\mathcal{V} = \{v_1, v_2, \ldots\}\) of schematic names ranged over by \(v, v', \ldots\). For reasons which will become apparent later we assume \(\mathcal{V}\) to be potentially infinite, and define an order \(<\) on \(\mathcal{V}\) by \(v_i < v_j\) if \(i < j\). As usual we will write \(v \leq v'\) to mean that either \(v = v'\) or \(v < v'\). The schematic names will act as representatives of data values; they will for instance occur in actions. We will also use substitutions of value expressions for schematic names; in this respect the schematic names will behave as variables.

A schematic action is an action, possibly with a schematic name instead of a data value. The terms schematic behavior expression and schematic program are defined analogously. A formal definition of this terminology is obtained by replacing the set \(\mathcal{D}\) with the set \(\mathcal{D} \cup \mathcal{V}\) in the definitions of value expression, action, behavior expression, and program in Section 3.1. However, in an identifier definition \(Id(x_1, \ldots, x_n) \equiv A\), we still require \(A\) to be a (non-schematic) behavior expression.

The definition of the transition relation \(\to_M\) in Section 3.2 is extended to schematic programs and schematic actions: in the rules \(\text{OUT}_M\) and \(\text{IN}_M\), \(d\) ranges over \(\mathcal{D} \cup \mathcal{V}\). It is not difficult to prove that this extension does not affect \(M\)-equivalence between ordinary programs. The point of all this is that we will derive a decision procedure for \(M\)-equivalence of schematic programs, and hence also for ordinary programs.

4.2 Strong Equivalence

In order to define the transition relation \(\to_F\) it is necessary to define, for each program \(a?x.A\), the appropriate schematic name \(v\) which may be received as input on port \(a\). This is achieved through the following definitions.

First, when \(A\) is a schematic program, say that \(v\) is used by \(A\) if there is a sequence of transitions

\[
A = A_1 \xrightarrow{\mu_1}_M \ldots \xrightarrow{\mu_{k-1}}_M A_k \xrightarrow{\text{a}v}_M A_{k+1}
\]

starting with \(A\) and with the last action \(\text{a}v\), and in which no input transition contains the name \(v\), i.e. is of the form \(A_j \xrightarrow{b?v}_M A_{j+1}\). Intuitively, \(v\) is used when it may occur in some future output action without first being received in an input action. It is easy to see that \(v\) must occur (syntactically) in \(A\) if \(v\) is used by \(A\). On the other hand, \(v\) may well occur in \(A\) without being used: consider e.g. the following identifier definition:

\[
Id(x, y) \equiv \text{a}!x . Id(x, y)
\]

Here, \(v\) is the only name which is used in the program \(Id(v, v')\). The definition is naturally extended to schematic behavior expressions as follows: if \(A\) has \(x\) free, then \(v\) is used by \(A\) if \(v\) is used by \(A[d/x]\) for some data value \(d\).
Second, for a schematic program A, define $\text{nextname}(A)$ to be the least (w.r.t. $<$) schematic name which is not used by A. In the example above, $\text{nextname}(\text{Id}(v_1,v_2)) = v_2$ and $\text{nextname}(\text{Id}(v_3,v_1)) = v_1$. It follows immediately that $\text{nextname}(A)$ is not used by A, and that $v < \text{nextname}(A)$ implies that v is used by A. It is straightforward to construct an algorithm for computing $\text{nextname}(A)$.

The relation $A \xrightarrow{\mu_F} A'$ on schematic programs is now defined as the least relation satisfying the following rules (here and in the following u ranges over $\mathcal{V} \cup \mathcal{D}$):

$$
\begin{align*}
\text{OUT}_F : & \quad a!u.A \xrightarrow{alu}_F A \\
\text{IN}_F : & \quad a?x.A \xrightarrow{a?v}_F A[v/x] \quad \text{for } v = \text{nextname}(A) \\
\text{SUM}_F : & \quad \frac{A_j \xrightarrow{\mu_F} A'}{\sum_{i \in I} A_i \xrightarrow{\mu_F} A'} \quad \text{if } j \in I \\
\text{ID}_F : & \quad \frac{A[u_1,\ldots,u_n/x_1,\ldots,x_n] \xrightarrow{\mu_F} A'}{\text{Id}(u_1,\ldots,u_n) \xrightarrow{\mu_F} A'} \quad \text{if } \text{Id}(x_1,\ldots,x_n) \subseteq A
\end{align*}
$$

Let us as an example take the MemoryCell defined by

$$
\text{MemoryCell}(x) \leftarrow \text{read!}x \cdot \text{MemoryCell}(x) + \text{write?y} \cdot \text{MemoryCell}(y)
$$

Here evidently $\text{nextname}($MemoryCell$(x)) = v_1$ for all variables x; hence MemoryCell(d) will have the following transitions:

$$
\begin{align*}
\text{MemoryCell}(d) & \xrightarrow{\text{read}d} \text{MemoryCell}(d) \\
\text{MemoryCell}(d) & \xrightarrow{\text{write}v} \text{MemoryCell}(v_1)
\end{align*}
$$

and MemoryCell(v_1) will similarly have the following transitions:

$$
\begin{align*}
\text{MemoryCell}(v_1) & \xrightarrow{\text{read}v} \text{MemoryCell}(v_1) \\
\text{MemoryCell}(v_1) & \xrightarrow{\text{write}v} \text{MemoryCell}(v_1)
\end{align*}
$$

This example demonstrates that MemoryCell(d) is finite-state w.r.t. our new transition relation. In general, the following proposition holds:

Proposition 1 For any schematic program A, the set $\text{ST}(A, \rightarrow_F)$ is finite.

Proof sketch: Let us first for (schematic) behavior expressions extend the usual definition of "subterms" by adding that the subterms of an identifier are the subterms of the right hand side of its definition. For a behavior expression A, define $\text{size}(A)$ to be the size of its textual length including all relevant identifier definitions, and $\text{vsize}(A)$ to be the maximum number of free variables in any subterm of A. Note that $\text{size}(A)$ and $\text{vsize}(A)$ are finite, since there are only finitely many identifiers. We can now prove (by induction on the definition of \rightarrow_F) that if $A \rightarrow_F \cdots \rightarrow_F B$, then
1. B is an instance of a subterm B' of A (i.e., B is obtained by substituting schematic names for variables in B')

2. If v is a schematic name in B, then $v \in \{v_1, \ldots, v_{\text{size}(A)}\}$

It follows that there are at most $\text{size}(A) \times (\text{size}(A))^{(\text{size}(A))}$ different such B. □

Recalling the definitions from Section 3.3, the transition relation \rightarrow_F induces an equivalence relation on programs: \sim_F-equivalence, which we will also call F-equivalence and write \sim_F. Since $ST(A, \rightarrow_F)$ is finite for each A, there exists an algorithm which decides whether two schematic programs are F-equivalent. Our main result is that we can use F-equivalence instead of M-equivalence. Namely, we have:

Theorem 2 Two schematic programs are M-equivalent precisely if they are F-equivalent.

Proof: see the Appendix. In the proof, one key fact about \rightarrow_F is that if two schematic programs $A[v/x]$ and $B[v/x]$ are M-equivalent for all v then they have exactly the same set of used schematic names, and hence $a?x.A$ and $a?x.B$ have the same initial transition \rightarrow_F (for $v = \text{nextname}(A) = \text{nextname}(B)$) leading to equivalent programs. □

Theorem 2 gives a decision procedure for \sim_M. For instance, the algorithm by Kannellakis and Smolka mentioned in the introduction can be used. This algorithm takes polynomial time in the size of the state spaces of the programs to be compared. In Section 5 we further investigate the complexity of this algorithm in terms of the sizes of A and B.

4.3 Observation Equivalence

The programs as defined in Section 3.1 can not perform internal actions. This is a serious drawback if we want to consider systems consisting of several programs running in parallel, and where communications between these programs are internal to the system. We shall therefore (following [Mil80]) extend the program notation by a new unobservable action τ. In the operational semantics a transition of the form $A \xrightarrow{\tau} A'$ intuitively means that A can transform into the program A' without performing any externally observable action. We extend the syntax of (schematic) behavior expressions by allowing the construct $\tau.A$.

The definition of the transition relations \rightarrow_M and \rightarrow_F is extended by

\[
\text{Tau}_M : \quad \tau.A \xrightarrow{\tau} M A \quad \text{and} \quad \text{Tau}_F : \quad \tau.A \xrightarrow{\tau} F A
\]

In the context of τ actions, M-equivalence is too strong to be interesting. Instead we use bisimulation equivalence based on the transition relation $\xrightarrow{\tau} M$ which disregards unobservable actions: define $A \xrightarrow{\mu} M A'$ to mean that there exists a sequence of transitions

\[
A \xrightarrow{\tau} M \cdots \xrightarrow{\tau} M A_k \xrightarrow{\mu} M A_{k+1} \xrightarrow{\tau} M \cdots \xrightarrow{\tau} M A'
\]

If μ is τ, then we also allow the case where $A = A'$ and the sequence is empty.

Two (schematic) programs are said to be observation equivalent iff they are $\xrightarrow{\tau} M$-equivalent.
In order to prove an analogue of Theorem 2, we must define a new transition relation, which has a function analogous to the relation \rightarrow^F. A first attempt is to define $A \xrightarrow{\mu} F A'$ analogously with $A \xrightarrow{\mu} M A'$, namely to mean that there exists a sequence of transitions

$$A \xrightarrow{\tau} F \quad \cdots \quad \xrightarrow{\tau} F A_k \xrightarrow{\mu} F A_{k+1} \xrightarrow{\tau} F \quad \cdots \quad \xrightarrow{\tau} F A'$$

of transitions, all but one of which is labeled by τ. However, with these definitions the analogue of Theorem 2 fails. The reason for this is that if μ is an action of the form $a? v$, then the choice of the schematic name v depends on the names used by A_{k+1} and not on the names used by A'. Consider as an example:

$$A = a? x . (\tau . 0 + c l v_1 . 0) + a? x . 0$$
$$B = a? x . (\tau . 0 + c l v_1 . 0)$$

Here A and B are observation equivalent. Since 0 does not use any schematic names we have, by the second summand in A, that $A \xrightarrow{a? v_1} F 0$. But the first transition from B must be $B \xrightarrow{a? v_1} F (\tau . 0 + c l v_1 . 0)$, and hence B can not do $B \xrightarrow{a? v_1} F B'$ for any B'.

To eliminate this type of discrepancy between observation equivalent programs, we define a transition relation \rightarrow^G, which differs from \rightarrow^F only in the choice of schematic names in some input transitions:

$$A \xrightarrow{\mu} F A' \quad \text{for } \mu = a! u \text{ or } \mu = \tau$$

$$A \xrightarrow{a? v} F A' \quad \text{for } v = \text{nextname}(A'[x/v])$$

$$A \xrightarrow{a? v'} F A'[v'/v]$$

Note that $\text{nextname}(A'[x/v])$ is the minimum (w.r.t. $<$) of v and $\text{nextname}(A')$. We now have the following general result:

Theorem 3 Two programs are observation equivalent precisely if they are \rightarrow^G-equivalent.

Proof: see the Appendix. The important property of \rightarrow^G (which is not shared by \rightarrow^F) is that if $A \xrightarrow{a? v} F A'$ then v' is used by A' for all $v' < v$. \Box

Note that since $ST(A, \rightarrow^F)$ is finite for all A, then so is $ST(A, \rightarrow^G)$ and hence also $ST(A, \rightarrow^M)$. We thus have a decision procedure for \rightarrow^G-equivalence, and hence for \rightarrow^M-equivalence by Theorem 3.

5 The equivalence problem is NP-hard

In this section, we discuss the complexity of the equivalence problem. We take $\text{size}(A) + \text{size}(B)$ to be the size of the problem of deciding equivalence between A and B. From the
proof of proposition 1 it follows that our method in Section 4 can take space exponential in the size of the problem, since $ST(A, \longrightarrow^r)$ and $ST(B, \longrightarrow^r)$ may be exponentially large.

In this section, we shall prove NP-hardness for the problem of determining strong equivalence. In fact, we prove it NP-hard even for programs without τ-actions. It immediately follows that the problem of determining observation equivalence is also NP-hard, since strong equivalence and observation equivalence coincide on programs without τ:s.

Theorem 4 The problem of determining whether two programs are M-equivalent is NP-hard.

Proof: We prove the theorem through a reduction from the clique problem, which is NP-complete (see e.g. problem GT19 of [GJ79]). The clique problem is to determine, given a graph G of size K with nodes n_1, \ldots, n_K and edges E (a set of pairs of the form (n_i, n_j)) and a positive integer $J \leq K$, whether G contains a clique (i.e. a maximally connected subgraph) of size J. We shall use the clique problem with the extra restriction that in the given graph G, each node has at least J neighbours; it is not difficult to prove that the clique problem is still NP-complete for this case.

Given a graph G of size K, and an integer J, we use the identifiers A, A_1, \ldots, A_K, each with arity $K + 1$, and B, B_0, \ldots, B_J, each with arity $J + 1$. These are defined by

\[
A(x_0, x_1, \ldots, x_K) \iff \sum_{i=1}^{K-1} A(x_0, x_1, \ldots, x_{i-1}, x_{i+1}, x_i, x_{i+2}, \ldots, x_K) + \sum_{i=1}^{K} a!x_0.A_i(x_0, x_1, \ldots, x_K)
\]

\[
A_i(x_0, \ldots, x_K) \iff \sum_{(n_i, n_j) \in E} a!x_i.A_j(x_0, \ldots, x_K) + \sum_{j=1}^{K} a!x_0.A_j(x_0, \ldots, x_K)
\]

\[
B(x_0, x_1, \ldots, x_J) \iff A(x_0, x_1, \ldots, x_J, x_0, \ldots, x_0) + \sum_{j=1}^{J} a!x_0.B_i(x_0, x_1, \ldots, x_J)
\]

\[
B_i(x_0, \ldots, x_J) \iff \sum_{j=0}^{J} a!x_j.B_j(x_0, \ldots, x_J) + \sum_{j=0}^{J} a!x_0.B_j(x_0, \ldots, x_J)
\]

The behavior of the programs can intuitively be described as follows: The program $A(d_0, \ldots, d_K)$ can either permute the last K data values arbitrarily, or perform the action $a!d_0$ while becoming a program $A_i(d_0, \ldots, d_K)$ for $i = 0, \ldots, K$. The program $B(d_0, \ldots, d_J)$ can either behave like $A(d_0, \ldots, d_J, d_0, \ldots, d_K)$ or perform the action $a!d_0$ and become a program $B_i(d_0, \ldots, d_J)$ for $i = 0, \ldots, J$. The program $A_i(d_0, \ldots, d_K)$ is able to perform the action $a!d_i$ and become the program $A_j(d_0, \ldots, d_K)$ if G has an edge between n_i and n_j. The program $B_i(d_0, \ldots, d_J)$ where $i \geq 0$ is always able to perform
the action \(ald_i \) and become the program \(B_j(d_0, \ldots, d_J) \). In addition, \(A_i(d_0, \ldots, d_K) \) can always perform the action \(ald_0 \) and become the program \(A_j(d_0, \ldots, d_K) \) for \(i, j > 0 \), and \(B_i(d_0, \ldots, d_J) \) can always perform the action \(ald_0 \) and become the program \(B_j(d_0, \ldots, d_J) \) for \(i, j \geq 0 \).

Next we make a definition. Given a \(J + 1 \)-tuple \(d_0, \ldots, d_J \) of data values, a \(K + 1 \)-tuple \(d'_0, \ldots, d'_K \) of data values, and an injective function \(h : [1, \ldots, J] \rightarrow [1, \ldots, K] \) we say that \(d_0, \ldots, d_J \) codes a clique in \(d'_0, \ldots, d'_K \) via \(h \) precisely if

1. \(d'_h(i) = d_i \) for \(i = 1, \ldots, J \)
2. \(d'_k = d_0 \) for \(k \in [0, \ldots, K] \) which is not in the range of \(h \)
3. the nodes \(n_{h(1)}, \ldots, n_{h(J)} \) constitute a clique in the graph \(G \).

Intuitively, the range of the function \(h \) contains indices of nodes in a clique in \(G \), and the data values \(d'_h(1), \ldots, d'_h(J) \) are the same as the data values \(d_1, \ldots, d_J \). The data values \(d'_k \) that are not in the clique" are the same as \(d_0 \).

Let \(d_0, \ldots, d_J \) be distinct data values. We claim that the programs \(A(d_0, \ldots, d_J, d_0, \ldots, d_0) \) and \(B(d_0, \ldots, d_J) \) are \(M \) equivalent precisely when the graph \(G \) contains a clique of size \(J \).

To prove one direction, assume that \(G \) contains a clique of size \(J \). Then there is a permutation \(d'_0, \ldots, d'_K \) of \(d_0, \ldots, d_J, d_0, \ldots, d_0 \) and an injective function \(h : [1, \ldots, J] \rightarrow [1, \ldots, K] \) such that \(d_0, \ldots, d_J \) codes a clique in \(d'_0, \ldots, d'_K \) via \(h \). From now on, we let \(d'_0, \ldots, d'_K \) be one fixed such permutation. Define the relation \(\sim \) to consist of

\[
\begin{align*}
A(d_0, \ldots, d_J, d_0, \ldots, d_0) & \sim B(d_0, \ldots, d_J) \\
A_h(i)(d'_0, \ldots, d'_K) & \sim B_i(d_0, \ldots, d_J) \text{ for } i \in [1, \ldots, J] \\
A_k(d'_0, \ldots, d'_K) & \sim B_0(d_0, \ldots, d_J) \text{ for } k \not\in \text{range}(h)
\end{align*}
\]

We must prove that \(\sim \) is a \(\longrightarrow^M \)-bisimulation. We consider the three cases of the above definition of \(\sim \).

\(A(d_0, \ldots, d_J, d_0, \ldots, d_0) \sim B(d_0, \ldots, d_J) \): Since \(A(d_0, \ldots, d_J, d_0, \ldots, d_0) \) is a summand of \(B(d_0, \ldots, d_J) \), any transition from \(A(d_0, \ldots, d_J, d_0, \ldots, d_0) \) can be simulated by a transition from \(B(d_0, \ldots, d_J) \). Also, any transition from \(B(d_0, \ldots, d_J) \) which is derived from the summand \(A(d_0, \ldots, d_J, d_0, \ldots, d_0) \) can of course be simulated by a transition from \(A(d_0, \ldots, d_J, d_0, \ldots, d_0) \). Finally, for any \(i \), the transition \(B(d_0, \ldots, d_J) \longrightarrow^M B_i(d_0, \ldots, d_J) \) can according to the definitions be simulated by the transition \(A(d_0, \ldots, d_J, d_0, \ldots, d_0) \longrightarrow^M A_h(i)(d'_0, \ldots, d'_K) \). This transition is possible since \(A(d_0, \ldots, d_J, d_0, \ldots, d_0) \) can permute its data values to become \(A(d'_0, \ldots, d'_K) \).

\(A_h(i)(d'_0, \ldots, d'_K) \sim B_i(d_0, \ldots, d_J) \) for \(1 \leq i \leq J \): Here we consider two cases

1. A transition \(A_h(i)(d'_0, \ldots, d'_K) \longrightarrow^M A_h(j)(d'_0, \ldots, d'_K) \) where \(1 \leq j \leq J \), bisimulates with the transition \(B_i(d_0, \ldots, d_J) \longrightarrow^M B_j(d_0, \ldots, d_J) \) because \((n_{h(i)}, n_{h(j)}) \)
must be an edge in E since $n_k(i)$ and $n_k(j)$ are both in the clique. The same correspondence holds when $a!d'_{k(i)}^t$ and $a!d'_0$ are both replaced by $a!d_0$.

2. A transition $A_{k(i)}(d'_0, \ldots, d'_K) \xrightarrow{a!d'_{k(i)}^t} A_k(d'_0, \ldots, d'_K)$ where $k \notin \text{range}(h)$, is simulated by the transition $B_i(d_0, \ldots, d_J) \xrightarrow{a!d'_0} B_0(d_0, \ldots, d_J)$ Vice versa, the transition $B_i(d_0, \ldots, d_J) \xrightarrow{a!d'_0} B_0(d_0, \ldots, d_J)$ can always be simulated by a transition $A_{k(i)}(d'_0, \ldots, d'_K) \xrightarrow{a!d_{k(i)}^t} A_k(d'_0, \ldots, d'_K)$ where $k \notin \text{range}(h)$, because by the requirement that each node in G have at least J neighbours, the node $n_k(i)$ must have a neighbour n_k for which $k \notin \text{range}(h)$. As in the preceding case, the same correspondence holds when $a!d'_{k(i)}^t$ and $a!d_0$ are both replaced by $a!d_0$.

$A_k(d'_0, \ldots, d'_K) \sim B_0(d_0, \ldots, d_J)$ for $k \notin \text{range}(h)$: Any transition from these programs is labeled by $a!d_0$. In analogy with the previous case, we consider two cases

1. A transition of form $A_k(d'_0, \ldots, d'_K) \xrightarrow{a!d'_0} A_{k(j)}(d'_0, \ldots, d'_K)$ with $1 \leq j \leq J$ bisimulates with the transition $B_0(d_0, \ldots, d_J) \xrightarrow{a!d'_0} B_j(d_0, \ldots, d_J)$

2. A transition of form $A_k(d'_0, \ldots, d'_K) \xrightarrow{a!d'_0} A_k(d'_0, \ldots, d'_K)$, with $k \notin \text{range}(h)$, of which there is one for each $k \notin \text{range}(h)$, bisimulates with the transition $B_0(d_0, \ldots, d_J) \xrightarrow{a!d'_0} B_0(d_0, \ldots, d_J)$

To prove the theorem in the other direction, assume that the programs $A(d_0, \ldots, d_J, d_0, \ldots, d_0)$ and $B(d_0, \ldots, d_J)$ are strongly equivalent. We now prove that G contains a clique of size J.

The program $B(d_0, \ldots, d_J)$ is for each $i \in [1, \ldots, J]$ able to perform the transition

$B(d_0, \ldots, d_J) \xrightarrow{a!d'_0} B_i(d_0, \ldots, d_J)$

Thus the program $A(d_0, \ldots, d_J, d_0, \ldots, d_0)$ must be able to simulate this transition by a transition of the form

$A(d_0, \ldots, d_J, d_0, \ldots, d_0) \xrightarrow{a!d'_0} A_k(d'_0, \ldots, d'_K)$

where d'_0, \ldots, d'_K is a permutation of $d_0, \ldots, d_J, d_0, \ldots, d_0$. Next observe that since $B_i(d_0, \ldots, d_J)$ and $A_k(d'_0, \ldots, d'_K)$ are equivalent, it must be possible to simulate the transition

$B_i(d_0, \ldots, d_J) \xrightarrow{a!d'_0} B_j(d_0, \ldots, d_J)$

by a transition of the form

$A_k(d'_0, \ldots, d'_K) \xrightarrow{a!d'_0} A_{k'}(d'_0, \ldots, d'_K)$
with \(B_j(d_0, \ldots, d_j) \sim_M A_{k'}(d'_0, \ldots, d'_K) \), where \(k' \) depends on \(j \). Note here that there is at most one \(k' \in [1, \ldots, K] \) for which \(A_{k'}(d'_0, \ldots, d'_K) \) can perform the action \(a!d_j \), since there is only one \(d'_j \) which is equal to \(d_j \). It follows that \(k' \) is uniquely determined by \(j \).

We can therefore define the function \(h \) by \(h(j) = k' \). We must have that

\[
A_{h(j)}(d'_0, \ldots, d'_K) \sim_M B_j(d_0, \ldots, d_j) \text{ for } j \in [1, \ldots, J]
\]

Now, observe that only the program \(B_j(d_0, \ldots, d_j) \) can perform the action \(a!d_j \), and hence \(h \) is injective.

Finally, observe that for \(i, j \neq 0 \) it must be possible to simulate the transition

\[
B_i(d_0, \ldots, d_j) \xrightarrow{a!d_i}_M B_j(d_0, \ldots, d_j)
\]

by the transition

\[
A_{h(i)}(d'_0, \ldots, d'_K) \xrightarrow{a!d_i}_M A_{h(j)}(d'_0, \ldots, d'_K)
\]

The reason is that \(B_j(d_0, \ldots, d_j) \) can perform the action \(a!d_j \), a property which is only shared by \(A_{h(j)}(d'_0, \ldots, d'_K) \). This implies that there is an edge in \(G \) between \(n_{h(i)} \) and \(n_{h(j)} \) for \(i, j \in [1, \ldots, J] \). It follows that the nodes \(n_{h(1)}, \ldots, n_{h(J)} \) constitute a clique in \(G \).

\[\square\]

6 Parallelism

In this section we indicate how our results are extended to parallel programs. We follow [Mil80] and define a binary operator "\|" (parallel composition) together with a family of unary postfix operators "\(\backslash a \)" (restriction on the port \(a \)). The operational semantics in [Mil80] amounts to the following extension of the definition of \(\rightarrow_M \):

\[
\text{PAR}_M : \quad A \xrightarrow{\mu}_M A' \quad \xrightarrow{\sigma}_M B' \quad \frac{A \parallel B \xrightarrow{\mu}_M A' \parallel B'}
\]

\[
\text{COM}_M : \quad A \xrightarrow{a?u}_M A' \quad B \xrightarrow{a!u}_M B' \quad \frac{A \parallel B \xrightarrow{a?u}_M A' \parallel B'}
\]

\[
\text{RES}_M : \quad A \xrightarrow{\mu}_M A' \quad \xrightarrow{\mu}_{A \parallel a} \quad \frac{A \backslash a \xrightarrow{\mu}_{A \parallel a}}{	ext{for } \mu \neq a?u, \mu \neq a!u}
\]

The rules for \(\parallel \) additionally have a symmetric form, thus \(A \parallel B \) has the same transitions as \(B \parallel A \): either one of \(A \) and \(B \) performs a transition in isolation (\text{PAR}_M), or they cooperate in a communication resulting in a \(\tau \)-transition (\text{COM}_M).

We apply the same ideas as in Section 4 by extending the definition of \(\rightarrow_P \) to the new operators. However, some extra care must be taken here for the results to carry over. In the \(\text{COM}_M \) rule, the premises require identical data values or schematic names in the input and output transitions. This is sufficient since, according to the \(\text{IN}_M \) rule, a program that
can do an input transition with \(u \) can also do an input transition with any other data value or schematic name, and can thus cooperate with any possible output action on the correct port. But the corresponding rule \(\text{IN}_F \) allows only one name. Clearly, the expected result of a communication will be that this name is substituted by whatever is output by the peer program, i.e. we have the rule

\[
\text{COM}_F : \quad \frac{A \xrightarrow{a?_F} A' \quad B \xrightarrow{a!_F} B'}{A \mid B \xrightarrow{\tau}_F A'[u/v] \mid B'}
\]

Another modification is required for the \(\text{PAR} \)-rule where one program performs an input transition in isolation. A simple-minded attempt would be to define a \(\text{PAR}_F \) rule by which it is possible to derive \((A \mid B) \xrightarrow{a?_F} (A' \mid B) \) from \(A \xrightarrow{a?_F} A' \). But then, the schematic name \(v \) that is introduced into \(A' \) may clash with an existing schematic name in \(B \), and this \(v \) in \(B \) may later be substituted by a subsequent application of the \(\text{COM}_F \) rule. Clearly, this is incorrect: the \(v \) in \(B \) is only accidentally related to the \(v \) in the input transition. To remedy this situation we adopt the following rule, which changes the schematic names of some input actions in order to avoid conflicts:

\[
\text{PAR}_F : \quad \frac{A \xrightarrow{a?_F} A' \quad v' = \text{nextname}(A'[x/v] \mid B)}{A \mid B \xrightarrow{a?_F} A'[v'/v] \mid B}
\]

The schematic name \(v \) in the input action is here changed to \(v' \). The point with choosing \(v' = \text{nextname}(A'[x/v] \mid B) \) is to ensure that \(v' \) can not be confused with any used name in \(A' \) or \(B \), except possibly with \(v \) if \(v \) does not occur in \(B \).

The remaining rules for \(\xrightarrow{\cdot} \) are unproblematic:

\[
\text{PARO}_F : \quad \frac{A \xrightarrow{\mu_F} A'}{A \mid B \xrightarrow{\mu_F} A' \mid B} \quad \text{for } \mu \neq a?v
\]

\[
\text{RES}_F : \quad \frac{A \xrightarrow{\mu_F} A'}{A \setminus a \xrightarrow{\mu_F} A' \setminus a} \quad \text{for } \mu \neq a?v, \mu \neq a!u
\]

In addition, the rules for \(\mid \) have a symmetric form. As in Section 4.3 we also define \(\xrightarrow{\cdot} \) and \(\xrightarrow{\cdot} \) in terms of the thus extended \(\xrightarrow{\cdot} \). With these definitions the results carry over to the language with parallel programs:

Theorem 5 Theorems 2 and 3 still hold in the language extended by parallel composition and restriction.

Proof: See the appendix.

It should be noted that Proposition 1 does not necessarily carry over. An infinite state-space may arise from the use of parallelism inside a recursive definition, resulting in a program that grows dynamically during execution. An example of this is the definition of an "unbounded bag":

15
Bag \xleftarrow{\text{in}?x.(\text{out}!x.0 \mid \text{Bag})}

However, many commonly occurring programs have a static process structure. Such programs can be described without use of parallelism inside a recursive definition. For such programs Proposition 1 carries over.

7 A Simple Application

In this section we indicate verifications which are possible in our formalism, and which would be impossible with existing fully automated techniques.

One major application of our techniques is in the area of verification of communication protocols. Consider a data transfer protocol, e.g. the Alternating-Bit Protocol, which should transfer messages from one user to another while preserving message order. Such a protocol can be proven correct by establishing an equivalence between the protocol and a (FIFO) buffer. Previous such verifications ([BK84, Koo85, LM87, Par88, SFD85, Ver86]) have either been performed manually, or have only considered the synchronization properties of the protocol, while ignoring the transfer of data. A verification which ignores data transfer does not determine whether the protocol transfers messages like a bag (not respecting their order) or like a buffer. With our techniques, it is possible to make such a distinction in an automated verification.

Since space does not permit a treatment of a communication protocol, we shall as a simple example sketch how one could distinguish between a buffer and a bag, both of capacity two. We write \(\approx \) for observation equivalence, and assume that \(x \) and \(y \) are variables. Define a buffer \(B_{1_{ab}} \) of capacity one over two different ports \(a \) and \(b \) as:

\[
B_{1_{ab}} \xleftarrow{a?x.\ b!x.\ B_{1_{ab}}}
\]

Correspondingly, a buffer \(B_{2_{ab}} \) of capacity two is:

\[
\begin{align*}
B_{2_{ab}} & \xleftarrow{a?x.\ B_{2_{ab}}'(x)} \\
B_{2_{ab}}'(x) & \xleftarrow{b!x.\ B_{2_{ab}} + a?y.\ B_{2_{ab}}''(x, y)} \\
B_{2_{ab}}''(x, y) & \xleftarrow{b!x.\ B_{2_{ab}}(y)}
\end{align*}
\]

A bag \(B_{G_{ab}} \) of capacity two is like a buffer but does not preserve the order of elements:

\[
\begin{align*}
B_{G_{ab}} & \xleftarrow{a?x.\ B_{G_{ab}}'(x)} \\
B_{G_{ab}}'(x) & \xleftarrow{b!x.\ B_{G_{ab}} + a?y.\ B_{G_{ab}}''(x, y)} \\
B_{G_{ab}}''(x, y) & \xleftarrow{b!x.\ B_{G_{ab}}'(y) + b!y.\ B_{G_{ab}}'(x)}
\end{align*}
\]

It is now straightforward to prove that two buffers of capacity one can be connected to form a buffer of capacity two:

\[
(B_{1_{ab}} \mid B_{1_{bc}})\setminus b \approx B_{2_{ac}}
\]

and that connected in a different way they form a bag:
\[B_{1ab} | B_{1ab} \approx B_{Gab} \]

These proofs can be performed mechanically using the alternative transition relation \(\rightarrow_G \), which makes all involved programs finite-state. For instance, \(B_{Gab} \) has five states:

\[B_G \ , \ B_G'(v_1) \ , \ B_G''(v_1,v_2) \ , \ B_G'(v_2) \ , \ B_G''(v_2,v_1) \]

Note that the programs are not finite-state with respect to \(\rightarrow_M \). Therefore, a traditional verification of similar programs would mechanically verify only the synchronization properties, disregarding the distinction between different data values. However, such a simplification makes it impossible to distinguish between a buffer and a bag.

Our algorithm has been implemented ([Lee89]) as an experimental extension of the Concurrency Workbench ([CPS]). It has been successfully applied to the verification of a sublayer of the CSMA/CS-protocol.

8 Conclusion

We have presented an algorithm to determine bisimulation equivalences on nondeterministic and parallel programs, which operate on infinite data domains but which do not perform any computations on the data.

An alternative an perhaps more straightforward algorithm could be to let the programs operate on a finite but sufficiently large data domain. Such an algorithm would presumably be less efficient in practice, since each input construct then gives rise to many input transitions. For instance, when proving that two FIFO buffers, with a capacity to store \(n \) data items, are equivalent, the alternative algorithm would generate a state space whose size is exponential in \(n \), whereas our algorithm would generate a state space which is quadratic in \(n \).

Our main idea is related to symbolic execution: by using schematic names as representatives of data values received in input actions, the equivalence problems are reduced to equivalence of finite-state programs. We conjecture that the same idea would apply equally well to other equivalences such as testing-, failure- or trace equivalence. We also conjecture that a similar symbolic execution could be used to obtain decision procedures for restricted versions of first-order modal logics such as HML or CTL.

In this paper, we have assumed that the set \(D \) of data values is infinite. In fact, our results apply to a finite \(D \), as long as its size is larger than the maximum number of free variables in any subterm of the involved programs; if \(D \) is too small, one can always use the decision procedure for \(\rightarrow_M \)-equivalence directly, since \(ST(A, \rightarrow_M) \) then becomes finite.

It would be interesting to extend the result to programs where expressions with functions are allowed in output constructs. It does not seem possible to add even simple (interpreted) function symbols to the language without invalidating our results, but it seems plausible that an extension of the ideas in this paper would be able to handle a restricted class of function symbols.
Acknowledgments

We are grateful to Robin Milner for comments on an earlier version of the manuscript, and to Johan Håstad for discussions on the complexity problem in section 5.

References

Appendix: Proofs

In this appendix we prove Theorems 2, 3 and 5. In the course of these proofs it is convenient to use the following definitions: let \(\text{next}_v(A) \) mean the minimum (w.r.t. \(<\)) of \(v \) and \(\text{name}(A) \). Thus, in particular \(v = \text{next}_v(A) \) holds if and only if all \(v' < v \) are used by \(A \). We will write \(\mathcal{V}(A) \) for the set of names used by \(A \).

Say that a name or data value \(u \) is \textit{fresh} for \(A \) if it does not occur syntactically in \(A \) nor in any definitions of identifiers. In a proof we will sometimes say \textit{"Assume a fresh \(u \) ..."} to mean that \(u \) is fresh for all programs considered so far in the proof. Since there are only finitely many identifier definitions, such fresh \(u \)'s always exist.

Define \(A \overset{\approx}{=} B \) to mean that there exist substitutions \([\overline{u}/\overline{v}]\) and \([\overline{u}'/\overline{v}']\), where no name in \(\overline{v} \) is used in \(A \) and no name in \(\overline{v}' \) is used in \(B \), such that \(A[\overline{u}/\overline{v}] = B[\overline{u}'/\overline{v}'] \). In other words, \(A \overset{\approx}{=} B \) if \(A \) and \(B \) can be made syntactically identical by substitutions of names which are not used in \(A \) and \(B \) respectively. Thus, if \(v \not\in \mathcal{V}(A) \) we have e.g. \(A \overset{\approx}{=} A[u/v] \) and \(A[v/v'][u/v] \overset{\approx}{=} A[u/v'] \). We will implicitly use the fact that \(\overset{\approx}{=} \) is preserved by all operators, for example that \(A \overset{\approx}{=} B \) implies \(A[C] \overset{\approx}{=} B[C] \) etc.

Relation composition is written in the ordinary way. For instance, \(A \overset{\mu_{\mathcal{M}}}{\rightarrow} B \overset{\mu_{\mathcal{M}}}{\rightarrow} C \) means that there exists a \(B \) such that \(A \overset{\mu_{\mathcal{M}}}{\rightarrow} B \) and \(B \overset{\mu_{\mathcal{M}}}{\rightarrow} C \).

Proof of Theorem 2

The proof of Theorem 2 relies on the following lemmas:

Lemma 6 If \(v' \geq v \) then \(\text{next}_v(A) = \text{next}_{v'}(A[v'/v]) \).

Lemma 7 If \(A \overset{\mu_{\mathcal{M}}}{\rightarrow} B \) then \(\mathcal{V}(A) = \mathcal{V}(B) \).

Lemma 8 \(\overset{\approx}{=} \) is a \(\overset{\mu_{\mathcal{M}}}{\rightarrow} \)-bisimulation and a \(\overset{\mu_F}{\rightarrow} \)-bisimulation; hence if \(A \overset{\approx}{=} B \) then \(A \overset{\mu_{\mathcal{M}}}{\rightarrow} B \) and \(A \overset{\mu_F}{\rightarrow} B \).

Lemma 9

a) \(A \overset{\mu_{\mathcal{M}}}{\rightarrow} A' \) iff \(A \overset{\mu_F}{\rightarrow} A' \).

b) If \(A \overset{\mu_F}{\rightarrow} A' \) then \(v = \text{next}_v(A') \), and for all \(u \) it holds \(A \overset{\mu_{\mathcal{M}}}{\rightarrow} A'[u/v] \).

c) If \(u \in \mathcal{V} \) and \(u \) is fresh for \(A \), and \(A \overset{\mu_{\mathcal{M}}}{\rightarrow} A' \), then for \(v = \text{next}_u(A') \) it holds \(A \overset{\mu_F}{\rightarrow} A'[v/u] \).

d) If \(A \overset{\mu_{\mathcal{M}}}{\rightarrow} A' \), then for some fresh \(v \) it holds \(A \overset{\mu_{\mathcal{M}}}{\rightarrow} A'' \) with \(A' = A''[u/v] \).

Lemma 10 If \(A \overset{\mu_{\mathcal{M}}}{\rightarrow} B \) then \(A[u/v] \overset{\mu_{\mathcal{M}}}{\rightarrow} B[u/v] \), and if \(A \overset{\mu_F}{\rightarrow} B \) then \(A[u/v] \overset{\mu_F}{\rightarrow} B[u/v] \) (i.e. \(\overset{\mu_{\mathcal{M}}}{\rightarrow} \) and \(\overset{\mu_F}{\rightarrow} \) are preserved by substitution).
Lemma 9 is the key lemma which relates \sim_M with \sim_F. The main idea of the proof of Theorem 2 is to show that \sim_M is a \sim_F-bisimulation and vice versa. It then follows immediately from the definitions that \sim_M and \sim_F coincide.

Proof of Theorem 2: We first prove that $A \sim_M B$ implies $A \sim_F B$, by proving that \sim_M is a \sim_F-bisimulation. So assume that $A \sim_M B$ and $A \xrightarrow{\mu} A'$. We must prove that $B \xrightarrow{\nu} B'$ for some B' such that $A' \sim_M B'$. If μ is an output action (of the form $a?v$) then this follows immediately from Lemma 9a and the fact that \sim_M is a \sim_F-bisimulation. So assume that $\mu = a?u$. By Lemma 9b we infer that $v = \text{next}_u(A')$ and that for all u it holds $A \xrightarrow{a?u} \sim_M A'[u/v]$. Choose a fresh name u such that $u > v$; in particular we have $A \xrightarrow{a?u} \sim_M A'[u/v]$ for this u. By $A \sim_M B$ we infer that for some B'' it holds $B \xrightarrow{a?u} B''$ with $A'[u/v] \sim_M B''$, which by Lemma 8 implies $A'[u/v] \sim_M B''$. From Lemma 9c we then get that there is a program B' such that $B \xrightarrow{a?u} B' \sim_B [v'/u]$ for $v' = \text{next}_u(B'')$. Now by Lemma 7 we get that $v' = \text{next}_u(A'[u/v])$, and by Lemma 6 conclude that $v' = \text{next}_u(A')$, i.e. $v' = v$. We have thus shown that $B \xrightarrow{\mu} B'$ and it remains to show $A' \sim_M B'$. Since u is a fresh name we have $A'[u/v][v'/u] = A'$, and by Lemmas 8 and 10 and $B'' \sim_M A'[u/v]$ we finally get $B' \sim_B [v'/u] \sim_M A'[u/v][v'\backslash u] = A'$.

We next prove that $A \sim_F B$ implies $A \sim_M B$ in the same way, by proving that \sim_F is a \sim_M-bisimulation. So assume that $A \sim_F B$ and $A \xrightarrow{\mu} A'$. We must prove that $B \xrightarrow{\mu} B'$ for some B' such that $A' \sim_F B'$. If μ is an output action then this follows immediately from Lemma 9a and the fact that \sim_F is a \sim_M-bisimulation. So assume that $\mu = a?u$. By Lemma 9d we get that there is a fresh name v' and a program A'' such that $A \xrightarrow{a?v'} A''$ and $A' = A''[u/v']$. Now by Lemma 9c we infer that $A \xrightarrow{a?u} \sim_M A''[v/v']$ for $v = \text{next}_u(A'')$. From $A \sim_F B$ we then infer that there is a program B'' such that $B \xrightarrow{a?u} B''$ and $B'' \sim_F A''[v/v']$, i.e. by Lemma 8 $B'' \sim_M A''[v/v']$. By Lemma 9b we conclude that for some $B' \sim_B [v'/u]$ it holds $B \xrightarrow{a?u} B'$. We have thus shown that $B \xrightarrow{\mu} B'$ and it remains to show that $A' \sim_F B'$. Since $v = \text{next}_v(A'')$ we must have either $v = v'$ or $v = \text{nextname}(A'')$; in the latter case certainly $v \notin \mathcal{V}(A'')$, so in either case $A''[v/v'][u/v'] \sim_B [v'/u]$. From Lemma 10 and $B'' \sim_F A''[v/v']$ we then get $B' \sim_B [v'/u] \sim_F A''[v/v'][u/v'] \sim_B [v'/u] = A'$, which with Lemma 8 implies $A' \sim_F B'$ as required.

We now sketch the proofs of the lemmas.

Proof of Lemma 6: If $v' = v$ the result is immediate, so assume $v' > v$ and let $u = \text{next}_v(A)$. This implies that $u \leq v$ and (1) for all $v'' < u$ it holds $v'' \in \mathcal{V}(A)$, and either of (2) $u = v$ or (3) $u \notin \mathcal{V}(A)$. Now, by definition of $\mathcal{V}(A)$ we obviously have $\mathcal{V}(A)[v'/v] = \mathcal{V}(A'[v'/v])$. Since $u \leq v$ we have that a name $v'' < u$ cannot be equal to v, hence from (1) we get that (4) for all $v'' < u$ it holds $v'' \notin \mathcal{V}(A[v'/v])$. Also, from $u \leq v < v'$ it follows $u \neq v'$ and we get from (2,3) that either (5) $u = v$ which means that $u \notin \mathcal{V}(A'[v'/v])$ or (6) $u \notin \mathcal{V}(A)$ which also implies $u \notin \mathcal{V}(A'[v'/v])$; hence in either case $u \notin \mathcal{V}(A'[v'/v])$. So, by (1) we get $u = \text{next}_v(A'[v'/v])$ which with $u < v'$ implies that $u = \text{next}_v(A'[v'/v])$.

Proof idea for Lemma 7: Assume that $v \in \mathcal{V}(A)$, i.e. that there is a sequence of \sim_M-transitions from A terminating with the action $a!v$, and which does not contain an input $b?v$. Then, from $A \sim_M B$ and the definition of bisimulation we know that there is a

21
similar sequence of transitions from B, i.e. $v \in \mathcal{V}(B)$.

\[\square\]

Proof idea for Lemma 8: It is straightforward to show that if $A \simeq B$ and $A \xrightarrow{u} A'$, then for some B' it holds that $B \xrightarrow{a} A' \simeq A'$, hence \simeq is a $\xrightarrow{\rightarrow}$-bisimulation. The case for \simeq_F is similar. We omit the details.

Proof of Lemma 9: The proof is through induction over the definitions of $\xrightarrow{\rightarrow}$ and $\xrightarrow{\rightarrow}_F$.

- **a)** Direction \Rightarrow: Assume that $A \xrightarrow{a_{ul}} A'$ by the OUT$_F$ rule. Then $A = a_{ul} A'$, and hence $A \xrightarrow{a_{ul}} A'$ by the OUT$_M$ rule. Similarly, if $A \xrightarrow{a_{ul}} A'$ by the SUM$_F$ or ID$_F$ rules, the result follows by induction and the SUM$_M$ or ID$_M$ rules respectively. Direction \Leftarrow is symmetric.

- **b)** Assume that $A \xrightarrow{a_{?v}} A'$ by the IN$_F$ rule. Then $A = a ? x.C$ and $A' = C[v/x]$, and $v = \text{nextname}(C)$. Hence for all $v' < v$ it holds $v' \in \mathcal{V}(C)$, thus also $v' \in \mathcal{V}(C[v/x]) = \mathcal{V}(A')$, whence by definition $v = \text{next}_u(A')$. Furthermore, by the IN$_M$ rule we get $A \xrightarrow{a_{?v}} C[u/x]$. Now since $v \notin \mathcal{V}(C)$ we have $C[v/x][u/v] \simeq C[u/x]$. Thus $A \xrightarrow{a_{?v}} C[u/x] \simeq C[v/x][u/v] = A'[u/v]$ as required.

Assume instead that $A \xrightarrow{a_{?v}} A'$ by the ID$_F$ rule. Then $A = \text{Id}(\bar{u})$ where Id has the definition $\text{Id}(\bar{x}) \Leftarrow B$, and $B[\bar{u}/\bar{x}] \xrightarrow{a_{?v}} A'$. By induction we then know that $v = \text{next}_u(A')$, and that $B[\bar{u}/\bar{x}] \xrightarrow{a_{?v}} A'[u/v]$ holds for all u, which by the ID$_M$ rule implies that $A = \text{Id}(\bar{u}) \xrightarrow{a_{?v}} A'[u/v]$ holds for all u.

Finally, if $A \xrightarrow{a_{?v}} A'$ by the SUM$_F$ rule, the result follows as above by induction and the SUM$_M$ rule.

- **c)** Assume that $A \xrightarrow{a_{?v}} A'$ from the IN$_M$ rule. Then $A = a ? x.C$ and $A' = C[u/x]$. By IN$_F$ it then holds that $A \xrightarrow{a_{?v}} C[v/x]$ for $v = \text{nextname}(C)$. Since u is a fresh name we have that $C[v/x] = C[u/x][v/u] = A'[u/v]$. Also, $v = \text{nextname}(C)$ means that for all $v' < v$ we have $v' \in \mathcal{V}(C[y/x])$, whence also $v' \in \mathcal{V}(C[u/x])$. Now $v = \text{nextname}(C)$ additionally means that $v \notin \mathcal{V}(C)$, so either $u = v$ or $v \notin \mathcal{V}(C[u/x])$; in either case $v = \text{next}_u(C[u/x]) = \text{next}_u(A')$.

If $A \xrightarrow{a_{?v}} A'$ from SUM$_M$ or ID$_M$ the result follows by induction in the same way as for Lemma 9b above.

- **d)** Assume that $A \xrightarrow{a_{?v}} A'$ from the IN$_M$ rule. Then $A = a ? x.C$ and $A' = C[u/x]$. Let v be a fresh name; we then by the IN$_M$ rule again have that $A \xrightarrow{a_{?v}} C[v/x]$. Choose $A'' = C[v/x]$, then $A''[u/v] = C[v/x][u/v] = C[u/x] = A'$ (since v is a fresh name).

If $A \xrightarrow{a_{?v}} A'$ from SUM$_M$ or ID$_M$ the result follows by induction in the same way as for Lemma 9b above.

\[\square\]

Note that for Lemma 9c we have proved that $A \xrightarrow{a_{?v}} A'[u/v]$ (and not only that $A \xrightarrow{a_{?v}} \simeq A'[u/v]$). In the next subsection we will prove this lemma for $\xrightarrow{\rightarrow}_G$, and then the stronger result will not hold. In order to get uniform proofs of Theorems 2 and 3 we use the weaker form of Lemma 9c in the proof of Theorem 2.
Proof idea for Lemma 10: It is straightforward, although a bit tedious, to prove that the relation S defined by

$$S = \{(A[u/v], B[u/v]) : A \sim_M B\}$$

is a \longrightarrow_M-bisimulation. The proof relies on a lemma (similar to Lemma 9) which relates the transitions of A and $A[u/v]$; this lemma is proven by induction over the definition of \longrightarrow_M. The same idea applies to \sim_F. We omit the details.

For this lemma to hold, the requirement that schematic names do not occur in identifier definitions is essential. To see this, consider the illegal definition $Id \iff a!v.Id$ where v is a name. Here $Id \sim_M a!v.Id$, and if $u \neq v$ then $Id[u/v] = Id \not\sim_M a!u.Id = (a!v.Id)[u/v]$.

\square

This concludes the proof of Theorem 2.

Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of Theorem 2. In the following we write \approx_M for \Rightarrow_M-equivalence, and \approx_G for \Rightarrow_G-equivalence. We first need a new part of Lemma 9 as follows:

Lemma 9 e) $A \longrightarrow_M A'$ iff $A \longrightarrow_F A'$

Proof: The proof is exactly as the proof of Lemma 9a, only with τ, $\text{T}A\text{U}_M$, and $\text{T}A\text{U}_F$ replacing $a!u$, OUT_M, and OUT_F, respectively. \square

We next need to prove that Lemmas 7–10 (including the new Lemma 9e) remain true when we consistently replace \sim_M by \approx_M, \sim_F by \approx_G, \longrightarrow_M by \Rightarrow_M, and \longrightarrow_F by \Rightarrow_G. The so obtained lemmas will be called Lemmas 7′–10′.

Proof of Theorem 3: The proof follows closely that of Theorem 2; we here only indicate the differences. First, consistently replace \sim_M by \approx_M, \sim_F by \approx_G, \longrightarrow_M by \Rightarrow_M, and \longrightarrow_F by \Rightarrow_G, and replace all references to Lemmas 7–10 by references to Lemmas 7′–10′. Next, in each of the directions of the main proof we have a new case $\mu = \tau$. This case is handled by Lemma 9′e in the same way as the case $\mu = a!u$ is handled by Lemma 9′a. These changes yield a proof of Theorem 3.

We here only show the proof for Lemma 9′; the other lemmas are straightforward. We will need the following auxiliary lemma (which also is needed in order to prove Lemma 10′):

Lemma 11 If $A \longrightarrow_M A'$ then $A[u/v] \longrightarrow_M A'[u/v]$, and if $A \longrightarrow_F A'$ then $A[u/v] \longrightarrow_F A'[u/v]$.

Proof idea: The proof is by induction over the definitions of \longrightarrow_M and \longrightarrow_F. If $A \longrightarrow_M A'$ by the $\text{T}A\text{U}_M$ rule, then $A = \tau.A'$, and $A[u/v] = \tau.(A'[u/v]) \longrightarrow_M A'[u/v]$. If $A \longrightarrow_M A'$ by the SUM_M or ID_M rule the result follows by induction. The case for \longrightarrow_F is similar. \square
Proof of Lemma 9:

a) We shall prove that \(A \xrightarrow{a_\mathbf{u}}_M A' \) iff \(A \xrightarrow{a_\mathbf{u}}_G A' \). For direction \(\Rightarrow \) assume \(A \xrightarrow{a_\mathbf{u}}_M A' \), i.e. that \(A \xrightarrow{}_M A_1 \xrightarrow{}_M \cdots \xrightarrow{}_M A_k \xrightarrow{a_\mathbf{u}}_M A_{k+1} \xrightarrow{}_M \cdots \xrightarrow{}_M A' \). Then by one application of Lemma 9a and repeated application of Lemma 9e we get that \(A \xrightarrow{}_F A_1 \xrightarrow{}_F \cdots \xrightarrow{}_F A_k \xrightarrow{a_\mathbf{u}}_F A_{k+1} \xrightarrow{}_F \cdots \xrightarrow{}_F A' \), which implies \(A \xrightarrow{a_\mathbf{u}}_F A' \), and by definition of \(\Rightarrow_G \) this implies \(A \xrightarrow{a_\mathbf{u}}_G A' \). Direction \(\Leftarrow \) is symmetric.

b) We must prove that if \(A \xrightarrow{a_\mathbf{u}}_G A' \) then \(\nu = \text{next}_u(A') \), and that for all \(u \) it holds that \(A \xrightarrow{a_\mathbf{u}}_M \circ \simeq A'[u/v] \). So assume \(A \xrightarrow{a_\mathbf{u}}_G A' \). Then \(A \xrightarrow{a_\mathbf{u}}_F A'' \) with \(A' = A''[v/v'] \) and \(v \) is the minimum of \(v' \) and \(\text{next}_{name}(A'') \). Thus for all \(v'' < v \) we have that \(v'' \in \mathcal{V}(A'') \) and hence (since \(v \leq v' \)) also \(v'' \in \mathcal{V}(A''[v/v']) = \mathcal{V}(A') \), i.e. \(v = \text{next}_v(A') \). By Lemmas 9b, 9e, 8, and 11 we then get that \(A \xrightarrow{a_\mathbf{u}}_M \circ \simeq A'[u/v] \). Now either \(v = v' \) or \(v = \text{next}_{name}(A') \); in the latter case \(v \notin \mathcal{V}(A'') \), so in either case \(A''[v/v'][u/v] \simeq A''[u/v'] \). Since \(A'[u/v] = A''[v/v'][u/v] \) this proves \(A \xrightarrow{a_\mathbf{u}}_M \circ \simeq A'[u/v] \) as required.

c) We must prove that if the name \(u \) is fresh for \(A \), and \(A \xrightarrow{a_\mathbf{u}}_M A' \), then for \(v = \text{next}_u(A') \) it holds \(A \xrightarrow{a_\mathbf{u}}_G \circ \simeq A'[v/u] \). So assume \(A \xrightarrow{a_\mathbf{u}}_M A' \). This means that we have \(A \xrightarrow{}_M A_1 \xrightarrow{}_M \cdots \xrightarrow{}_M A_k \xrightarrow{a_\mathbf{u}}_M A_{k+1} \xrightarrow{}_M \cdots \xrightarrow{}_M A' \). By Lemmas 9c, 9e, 8, and 11 we get that \(A \xrightarrow{}_F A_1 \xrightarrow{}_F \cdots \xrightarrow{}_F A_k \xrightarrow{a_\mathbf{u}}_F \circ \simeq A_{k+1}[v/u] \xrightarrow{}_F \cdots \xrightarrow{}_F A'[v'/u] \) for \(v' = \text{next}_u(A_{k+1}) \). Thus either \(v' = u \) or \(v' = \text{next}_{name}(A_{k+1}) \); in the latter case \(v' \notin \mathcal{V}(A_{k+1}) \) which (since \(A_{k+1} \xrightarrow{}_F \cdots \xrightarrow{}_M A' \)) implies that \(v' \notin \mathcal{V}(A') \). The \(\xrightarrow{}_F \)-transitions give that \(A \xrightarrow{a_\mathbf{u}}_F \circ \simeq A'[v'/u] \). By definition of \(\Rightarrow_G \) this implies \(A \xrightarrow{a_\mathbf{u}}_G \circ \simeq A'[v'/u][v/v'] \) for \(v = \text{next}_{v'}(A'[v'/u]) \). Since \(v' = u \) or \(v' \notin \mathcal{V}(A') \) we have that \(A'[v'/u][v/v'] \simeq A'[v/u] \). This proves \(A \xrightarrow{a_\mathbf{u}}_G \circ \simeq A'[u/v] \). Now \(v' = \text{next}_u(A_{k+1}) \) gives that \(v' \leq u \). From \(v = \text{next}_u(A'[v'/u]) \) and Lemma 6 we thus infer that \(v = \text{next}_u(A'[v'/u][u/v']) \). Since \(v' = u \) or \(v' \notin \mathcal{V}(A') \) we have that \(A'[v'/u][u/v'] \simeq A' \) whence \(\mathcal{V}(A'[v'/u][u/v']) = \mathcal{V}(A') \) and thus \(\text{next}_u(A'[v'/u][u/v']) = \text{next}_u(A') \), i.e. \(v = \text{next}_u(A') \) as required.

d) We must prove that if \(A \xrightarrow{a_\mathbf{u}}_M A' \), then for some name \(v \) not occurring in \(A \) it holds \(A \xrightarrow{a_\mathbf{u}}_M A'' \) with \(A' = A''[u/v] \). The proof is directly from Lemmas 9d and 11.

e) We must prove that \(A \xrightarrow{\tau}_M A' \) iff \(A \xrightarrow{\tau}_G A' \). The proof is immediate by repeated application of Lemma 9e.

\[\Box\]

This concludes the proof of Theorem 3.

Proof of Theorem 5

We prove Theorem 5 by demonstrating that the proofs of Theorems 2 and 3 carry over to the language extended with parallelism and restriction. Obviously, only the parts which
explicitly refer to the structure of the language, namely the proofs of Lemmas 8–11, need reconsideration. There then emerges one small complication: Lemmas 9e and 11, and hence also Lemma 9a and 9e, only hold in the following slightly weaker form: \(\rightarrow_M \) must be replaced by \(\rightarrow_M \circ \simeq \) in consequents, and similarly \(\rightarrow_F \) by \(\rightarrow_F \circ \simeq \). For instance, Lemma 9e should be modified to “A \(\rightarrow_M A' \) implies A \(\rightarrow_F \circ \simeq A' \), and A \(\rightarrow_F A' \) implies A \(\rightarrow_M \circ \simeq A'' \).” Fortunately, the main proof still holds if the symbols “\(\circ \simeq \)” are inserted in strategic places. We will not elaborate on the modification of the main proof; instead we indicate how some proofs of the critical lemmas are modified.

Lemma 9: The induction over the definitions of \(\rightarrow_M \) and \(\rightarrow_F \) must be extended to cover the new rules for parallel composition and restriction. This is straightforward for the PAR_{OF}, RES_{OF}, RES_{M} rules, and for the PAR_{M} rule applied to \(\tau \) or output actions. We show here the remaining cases.

b) Assume that A \(\rightarrow_{\tau} B' \) by the PAR_{F} rule. Then A = B(C) where B \(\rightarrow_{\tau'_{F}} B' \) and v = nextname(B'(x/v)[C]) and A' = B'[v/v'][C]. By induction v' = next_{v}(B'), i.e. all v'' < v' are used by B', and B \(\rightarrow_{\tau'_{M}} \circ \simeq B'[u/v] \) holds for all u. So by the PAR_{M} rule we infer that A \(\rightarrow_{\tau'_{M}} \circ \simeq B'[u/v][C]. \) Now either v = v' or v \notin \mathcal{V}(B'), and also v \notin \mathcal{V}(C). Hence A'[u/v] = (B'[v/v'][C][u/v]) \simeq B'[v/v'][u/v][C] \simeq B'[u/v][C]. This proves A \(\rightarrow_{\tau'_{M}} \circ \simeq A'[u/v]. \) Also, from v = nextname(B'(x/v')[C]) we infer that all v'' < v are used by B'(x/v')[C], and hence also used by B'[v/v'][C] = A', whence v = next_{v}(A').

c) Assume that A \(\rightarrow_{\tau} B' \) by the PAR_{M} rule. Then A = B(C) where B \(\rightarrow_{\tau_{M}} B' \) and A' = B'[C]. By induction B \(\rightarrow_{\tau'_{F}} B'[v'/u] \) for v' = next_{u}(B'). From PAR_{F} we infer that B[C] \(\rightarrow_{\tau'_{F}} B'[v'/u][v'/v'] \), for v = nextname(B'[v'/u][x/v'][C]). Now either v' = u or v' \notin \mathcal{V}(B'); in either case B'[v'/u][v'/v'] \simeq B'[v/u]. Since u is fresh for A it cannot occur in C, whence C = C[v/u]. We thus have B'[v'/u][v'/v'][C] \simeq B'[v/u][C][v/u] = (B'[v'/u][v'/v'][C][v/u]) \simeq (B'[v'/u][v'/v'][C][v/u]) \simeq B'[v'/u][v'/v'][C][v/u] = A'[v/u]. This proves A \(\rightarrow_{\tau'_{F}} B'[v'/u] \) and it remains to prove v = next_{u}(A'). Now B'[v'/u][x/v'][C] \simeq B'[x/u][C], hence v = nextname(B'[v'/u][x/v'][C]) implies v = nextname(B'[x/u][C]). Thus either v = u or v \notin \mathcal{V}(B'[v'/u][x/v'][C]) \subseteq \mathcal{V}(A'). Additionally, for all v'' < v we get v'' \in \mathcal{V}(B'[x/v'][C]), which implies v'' \in \mathcal{V}(B'[v'/u][x/v'][C]) \subseteq \mathcal{V}(A'). This proves v = next_{u}(A') as required.

e) direction \(\rightarrow = \rightarrow_{\tau} \): Assume that A \(\rightarrow_{\tau} B' \) by the COM_{M} rule. Then A = B(C) and B \(\rightarrow_{\tau_{M}} B' \) and C \(\rightarrow_{\tau_{F}} C' \) for some u, and A' = B'[C']. We must prove that A \(\rightarrow_{\tau} \circ \simeq A' \). From Lemma 9d we infer that for some fresh v it holds C \(\rightarrow_{\tau_{M}} C'' \) with C' = C''[u/v]. Lemma 9c then gives that for some C'' it holds that C \(\rightarrow_{\tau'_{F}} C'' \simeq C''[v/v'][C'] \) for v = next_{v}(C''). Now B \(\rightarrow_{\tau_{M}} B' \) and Lemma 9a gives that B \(\rightarrow_{\tau_{F}} \circ \simeq B' \), so by the COM_{F} rule we conclude A = B(C \(\rightarrow_{\tau_{F}} \circ \simeq \) C'[u/v]) \simeq B'[C''[v/v'][u/v]]. Since v' = v or v' \notin \mathcal{V}(C'') we get that C''[v/v'][u/v] \simeq C''[u/v][C] \simeq C'$. This proves A \(\rightarrow_{\tau} \circ \simeq B'[C'] = A' \) as required.

1 The reason for this is that if A \(\rightarrow_{\tau} \) there may be “useless” occurrences of v in A' which are not related to the derivation of the \(\rightarrow_{\tau} \) transition. If this transition is used as a premise in the COM_{F} rule, all v's (even the unrelated ones) will be substituted. In the corresponding derivation in the \(\rightarrow_{M} \) semantics this anomaly is not present.
direction \iff: Assume that \(A \xrightarrow{\tau} A' \) by the \text{COM}_F \text{ rule}. Then \(A = B | C \) and
\(B \xrightarrow{a_i^p} B' \) and \(C \xrightarrow{a_i^p} C' \) for some \(u, v \), and \(A' = B' | C'[u/v] \). By Lemma 9a we get that \(B \xrightarrow{a_i^m} B' \), and by Lemma 9b that \(C \xrightarrow{a_i^m} C'' \equiv C'[u/v] \). Thus by the \text{COM}_M \text{ rule we conclude } A = B | C \xrightarrow{\tau} B' | C'' \equiv B' | C'[u/v] = A' \) as required.

Note that because of the \text{COM}_F and \text{COM}_M \text{ rules, Lemma 9e now relies on Lemmas 9a–9d.}

\(\Box \)

\textit{Lemma 10}: The proof idea is the same as before. The induction over the definitions of
\(\rightarrow_M \) and \(\rightarrow_F \) is complicated in the same way as the proof of Lemma 9. We omit the details.

\(\Box \)

\textit{Lemma 11}: This lemma is actually one of the lemmas needed to prove Lemma 10. For example we now need to establish, by induction over the definition of \(\rightarrow_M \), for arbitrary \(\mu \) that if \(A \xrightarrow{\mu} A' \) then \(A[u/v] \xrightarrow{\mu[u/v]} A'[u/v] \). We omit the proof since all steps are straightforward.

This concludes the proof of Theorem 5.