SICS Technical Report T2007:04
ISSN 1100-3154
ISRN:SICS-T-2007/04-SE

Integrating Building Automation
Systems and Wireless Sensor
Networks

Fredrik Osterlind, fros@sics.se
Erik Pramsten, epr@sics.se
Daniel Roberthson, dro@sics.se
Joakim Eriksson, joakime@sics.se
Niclas Finne, nfi@sics.se

Thiemo Voigt, thiemo@sics.se

May 2007

Abstract

Building automation systems (BAS) are used to control and improve in-
door building climate at reduced costs. By integrating BAS with wireless
sensor networks, the need for cabling can be removed, and both installation
and operational costs significantly reduced. Furthermore, temporary BAS in-
stallations are made possible. By implementing and evaluating the open BAS
standard BACnet on the ESB nodes we show that using existing standard BAS
protocols is possible on resource-constrained sensor nodes.

Keywords: Building Automation Systems, Wireless Sensor Networks, BACnet,
Integration

Chapter 1

| ntroduction

Building Automation Systems (BAS) are used to both improve the indoor climate in build-
ings and to reduce the operational costs. Originally, BAS mostly consisted of heating, ven-
tilation and air-conditioning (HVAC) systems. To further increase management and reduce
costs, both lighting, safety, security, and transportation supervision have been integrated
into BAS. Traditionally, BAS have been used in large buildings such as schools, hospitals,
and offices. For such buildings, the construction costs constitute only one seventh of the
overall operational costs [12]. Hence, BAS provide a great savings potential by reducing
the operational costs.

Wireless sensor networks (WSN) consist of small sensor nodes that sense the environ-
ment, perform computations, and communicate with other nodes using the on-board radio
module. Typically, sensor nodes transport the measured data to a base station using multi-
hop communication. The size of typical sensor nodes is close to a matchbox. Sensor nodes
are typically powered by batteries. Since it is in general not possible, or too labor-intensive,
to replace the node batteries, reducing power consumption is important in wireless senor
networks. Since wireless communication is the major energy consumer [18], a particular
focus has been on power-efficient communication protocols for wireless sensor networks.

Integrating WSN and BAS has a number of advantages. The main advantage is that the
installation costs of WSN are lower than that of traditional BAS, since wiring is avoided.
New buildings can therefore be equipped with a BAS based on wireless sensor network
technology. It is also possible to extend an existing BAS in order to increase the sensor
coverage. Furthermore, wireless sensors can also be installed more easily in unapproach-
able places such as at high heights.

In this paper, we show that it is possible to implement a standard protocol for build-
ing automation on typical resource-constrained sensor nodes found in wireless sensor net-
works. We report on our implementation of BACnet on ESB nodes with 2 Kb RAM and 60
Kb flash ROM. Even with such severe constraints we show it is possible to implement an
important subset of the BACnet services such as the read and write property services as well
as the change of value (COV) service that fits very well into the resource-constrained nature
of wireless sensor networks. We also discuss the limitations and future improvements of
our current implementation.

The rest of this paper is structured as follows. We give a background to wireless sensor
networks and our prototype sensor node hardware in Section 2. Section 3 motivates our
choice of building automation system, and Section 4 introduces the BACnet protocol in
more detail. Section 5 describes our implementation of BACnet on the ESB node, and
Section 6 evaluates the current system. We review related work in Section 7 and conclude
the paper in Section 8.

Chapter 2

Background

System software for WSN is a challenging and active research area. The sensor node
hardware constrains both the operating system and the applications. In this section, we
briefly introduce both building automation systems and wireless sensor networks. We also
present Contiki [8], a sensor node operating system developed at SICS, and the ESB node,
our choice of sensor node hardware.

2.1 Building Automation Systems

Traditional BAS use wired technologies where sensors and actuators are connected to
controllers. The first modern BAS deployed point-to-point centralized control that was later
replaced by a centralized bus. Modern BAS use distributed bus control, also called field
buses, and all system nodes have a built in control unit which enables them to act without
centralized control.

2.2 Wirdess Sensor Networks

A wireless sensor network (WSN) consists of tiny resource-limited devices called sen-
sor nodes. Each sensor node has some sensing ability, measuring for example temperature,
light, humidity, or carbon dioxide levels. Every node also has means of communication,
typically by a low-power radio such as the 868 MHz TR1001. Finally, each node has pro-
cessing ability by an on-board micro-controller. Typically, due to the lack of infrastructure
in deployment environments, sensor nodes are also battery driven.

The sensor nodes are connected in a wireless network, where each node has a communi-
cation link to at least one other node. By collaborating, forwarding each other’s messages
in a multi-hop fashion, the network can cover vast areas of interest and still maintain con-
nectivity between all nodes. A typical WSN could be connected to a BAS that monitors the
temperature levels throughout a building.

Research challenges in WSNs include system software, communication protocols, power
management and self-configuring networks. System software is challenging due to the of-
ten very limited memory on the nodes; the primary memory of a sensor node is in the order
of a few kilobytes. Communication protocols must enable efficient and reliable multi-hop
communication while also adapting to changes in the network for example due to node
battery exhaustion or hardware failures. If the nodes are battery driven it is important to
minimize the energy consumption in order to prolong the network lifetime. Typically this
is performed by advanced sleep schedules that cause nodes to turn off their radios in a
synchronized fashion.

Figure 2.1. The Embedded Sensor Board

2.2.1 The ESB node

The Embedded Sensor Board (ESB), shown in Figure 2.1, is a prototype sensor board [21]
developed by the Freie Universitédt Berlin. The ESB board consists of a Texas Instruments
MSP430 [11] low power micro-controller with 60 kilobytes of Flash ROM and 2 kilobytes
of RAM, an RF Monolithics TR1001 single-chip RF transceiver [20], and a set of sensors.
The on-board sensors include a temperature sensor, a light sensor for the detection of visi-
ble light, a vibration sensor for motion detection and a microphone for determination of the
ambient noise level. The MSP430 micro-controller is designed specifically for low-power
applications and provides a set of low-power sleep modes. The micro-controller is awak-
ened from a sleep mode by an interrupt, generated either by one of the internal timers or
by an external device such as a button or the light sensor. The on-chip Flash ROM can be
selectively reprogrammed by software running on the micro-controller.

The 2 Kb RAM offered by the ESB nodes is comparatively smaller than the RAM size
on other sensor nodes. For example, the widely used Telos node [17] has 10 Kb of RAM
memory.

2.2.2 The Contiki Operating Systems

The Contiki [8] operating system is designed specifically for resource-limited devices
such as sensor nodes. Contiki uses an event-based kernel which reduces the overall system
memory requirements by sharing a common stack between all processes. The operating
system is implemented in C and is easily ported to new platforms. It currently supports a
number of different platforms and micro-controllers such as the TI MSP430 and the Atmel
AVR. Furthermore, Contiki supports dynamic loading and unloading of programs at run-
time. This enables upgrading software in an already deployed WSN. Contiki also supports
regular Internet networking through the ulP TCP/IP stack [7].

Chapter 3

| ntegrating Wireless Sensor
Networ ks with Building
Automation Systems

When applying wireless sensor networks on building automation systems it is preferable
to use existing BAS standards. By using existing standards, compatibility with already
deployed solutions is ensured, and future BAS protocol updates can be incorporated more
easily. This section motivates integrating WSN and BAS as well as our choice of the
building automation system BACnet.

3.1 Motivation

Integrating WSN and BAS has a number of advantages. The main advantage is that the
installation costs of WSN are lower and the installation faster than wired systems since
wiring is avoided. Furthermore, a large fraction of failures in automation networks is due
to malfunctioning or disrupt cables. For example, ABB is able to give longer guarantees
for the wireless variant of a product compared to the wired one due to problems with aging
cables. Moreover, all products cannot be monitored using wired equipment, for example
rotating arms. It is also more straightforward to equip mobile devices with wireless tech-
nology compared to wired. The decreased installation costs make it possible to increase
the number of sensors and hence the spatial resolution. The increased spatial resolution al-
lows for more fine-grained measurements and control. A further advantage is that wireless
technology enables temporary measurements: a network can be set up to perform measure-
ments during a limited time in order to measure, optimize and evaluate the effect of the
optimization. We call such an effort ad hoc benchmarking.

Integrating an open standard BAS protocol with WSN, compared to designing a new
BAS protocol specifically for the wireless domain, decreases company costs and product
time-to-market since existing control systems can be reused.

3.2 Choaice of building automation system

Before selecting a building automation system suitable for integration with wireless
sensor networks, we identify the following protocol requirements:

Openness The protocol should be open, preferably standardized, free of unit licenses and
widely used. This guarantees interoperability between systems from different manufactur-
ers as well as a large existing user base.

Common communication protocols Selecting a BAS protocol that shares a common
underlying communication protocol with WSN enables an easier transition to the wireless
medium. Contiki supports TCP/IP via ulP, and TCP/IP is found in BAS protocols. Other
protocols are usually based on a lower abstraction level and require wired connections
between devices. The BAS protocol has to either directly support TCP/IP communication
or tunneling in IP packets.

Small protocol memory footprint The memory footprint of the protocol should be small
enough to fit on resource constrained sensor devices. If an implementation of the full
protocol stack is larger than the available space, it should be possible to implement only a
relevant subset of the protocol.

Node management The protocol should support node management, i.e., sensor devices
joining or leaving a network should not require a reconfiguration of the entire network.

Energy-efficiency In order to decrease energy consumption and hence prolong network
lifetime, a sensor node must be able to temporarily turn off its radio since the radio is the
major energy consumer on the node [18]. The protocol must be able to handle temporarily
offline and unavailable nodes.

We analyze a set of existing protocols including LonWorks [5], BACnet [3], OPC [22],
KNX [1] and Modbus [14] to see how well they fit with the requirements we have identified.
An overview of the results is shown in Table 3.2.

| | LonWorks | BACnet | OPC | KNX | Modbus |

Openness YES YES YES | YES YES
Native IP support - YES YES - -
IP tunneling YES YES - YES -
Small code size YES YES YES | YES YES
Simple node management - - - - -
Energy efficiency YES YES YES | YES -

Table 3.1. Protocol analysis overview

Modbus’ master-slave communication is not suitable for wireless sensor nodes since it
forces nodes to have their radio turned on all the time which inhibits the usage of power-
saving protocols.

We chose the BACnet protocol. The main reasons are that BACnet is an open, widely
used standard with support for many underlying network technologies including TCP/IP.
The server implementation is not very complex making it possible to implement BACnet
on resource-constrained devices. Moreover, an open reference implementation is available
through the BACnet homepage [4].

Chapter 4

BACnhet

BACnet is a communication protocol described as “A Data Communication Protocol for
Building Automation and Control Networks” [3]. The work on BACnet started 1987 when
the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE)
was not able to find a protocol that fulfilled their criteria for a building automation and
control protocol [12]. ASHRAE released the first BACnet version 1995. Later that year,
BACnet became American standard. ASHRAE has maintained and developed BACnet to
become a complete building automation protocol that is used in all areas of building au-
tomation, e.g. HVAC, security, fire alarm and lighting control. In 2003, BACnet became a
world (ISO 16484-5) and European (EN/ISO 16484-5) standard.

Objects and devices BACnet uses an object oriented approach to describe the function-
ality of nodes, called devices, in a network. The objects are constructed in a uniform way
to enable access to object information over the network. A BACnhet object describes one
certain device functionality, e.g. information about a physically attached input (analog or
binary input). Every object encapsulates a collection of data elements called properties
used to describe the object. The properties may be accessed and altered by other objects.

Device Object with properties: Object_Identifier: 100
Object_Name: ESB Sensor
Object_Type: Device

Analog I nput Object with properties:
Object_ldentifier: 1
Object_Name: Sensor#l

Object_Type: Analog Input
Object_Value: 22
Units: Degree—Celsius

Figure 4.1. The device object is mandatory

The BACnet standard specifies a number of objects. These include objects for managing
analog and binary in- and outputs, collecting trends, scheduling of operational hours and
describing control loops. However, a BACnet device does not have to implement all stan-
dard objects to conform to the standard specification. Every device has to implement one
special object in order to make the device available in the network. The object is called the
device object and describes the device. An example device object is shown in Figure 4.1.

Services and Communication Model In BACnet, devices use services to pass infor-
mation between each other. The communication model used is a traditional client-server
model where each BACnet node represents a server, see Figure 4.2. Using services, BAC-
net devices can fetch information about other devices and objects, command devices to

perform certain actions and inform other devices that an event has occurred. The BACnet
specification describes a number of standard services. Depending on in which area they are
used, services have been divided into five different groups: File Access Services, Object
Access Services, Alarm and Event Services, Remote Device Management Services and
Virtual Terminal Services.

Similar to how all objects and properties do not need to be implemented, a device does
not need to implement all services. The only mandatory service is the read property service
that is used to access devices and their properties.

Client

1. Subscribe COV

BACnet 2. Present_Vaue

3. COV_Natification

... more notifications....
PRl

Figure 4.2. BACnet uses a client-server communication model

The Object Access Services are a collection of services to access and modify object
properties, and to create and delete objects. Properties in any BACnet object, both stan-
dardized and vendor specific, can be accessed through these services. This group contains
the most commonly used services: the read and write property services. There also exist
more powerful variants of these services, for example to read or write multiple properties
at the same time or to read properties given certain conditions. Some object types can also
be created and deleted with object access services, often used for calendars and schedules.

The Alarm and Event Services are used to handle the communication regarding events.
These events can be value changes for certain properties and changes in object state that
meet predefined criteria, those considered serious are reported as alarms. One very inter-
esting service for wireless sensor networks is the change of value (COV) service. Using
COV, a device subscribes to receive updates of a property when it changes with a prede-
fined amount since the last update, see Figure 4.2. This is for example useful for receiving
temperature updates only when the temperature actually has changed.

Chapter 5

| mplementation of BACnet on
Sensor Nodes

We have implemented BACnet on the ESB nodes. The high-level architecture of the im-
plementation is shown in Figure 5.1.

BACnet
Contiki ulP
sensor node
operating
system

Figure 5.1. Simplified architecture.

As shown in the figure, BACnet is implemented as an application running on top of
the Contiki operating system. TCP/IP communication is provided by the ulP stack [7].
The implementation follows closely the reference implementation available on the BACnet
homepage. The reference implementation did not include the COV service. Since we deem
this service as extremely valuable for wireless sensor networks, we have implemented this
service as well.

Chapter 6

Evaluation

The key contribution of this work is to show the feasibility of applying a well-known stan-
dard protocol for building automation on wireless sensor networks. We show that the mem-
ory footprint of our BACnet implementation is small enough to fit in memory-constrained
sensor nodes. We implement the important BACnet Change of Value service. Finally, we
discuss possible improvements of the current implementation.

6.1 Change of Valuefor Wireless Sensor Networks

We claim that the Change of Value (COV) service as very interesting for wireless sensor
networks, as discussed in Section 4. To demonstrate this claim we use the change of value
service in a simple temperature collecting network.

We use two experimental setups. The first one was active in a home living room for 96
hours, and the second one was active for 20 hours in an office environment. We configured
the change of value service to notify the client whenever the temperature had changed
more than 1 degree Celsius since the last notification. Both of these environments are
relatively stable in terms of temperature fluctuations, but we believe they reflect typical
BAS environments well.

During the experiments we received from one sensor node 9 COV notifications in the
living room and 3 notifications in the office environment. If we had not implemented the
COV service directly on the sensor nodes but instead on a network gateway or other entity
the temperature values must have been polled or periodically transmitted from the sensor
nodes. In comparison, assuming a temperature resolution of 10 minutes would be sufficient,
the sensor node would have sent 576 radio messages instead of 9 in the living room. In the
office the sensor node would have sent 120 radio messages instead of 3.

Since radio communication is the most energy consuming application on sensor nodes,
using the COV service can significantly improve the life-time of a battery-driven wireless
building automation system.

6.2 Memory consumption

In wireless sensor networks the available memory often limits the functionality of the
system. We measure the static memory consumption of a number of different BACnet
configurations on our sensor nodes. See Table 6.2 for a comparison of the memory con-
sumption of the different configurations.

The results confirm that our base system, consisting of the Contiki operating system
with the ulP TCP/IP stack, is fairly small. The base system requires only around 1 KB
RAM. The memory consumption increases significantly when adding the smallest possible
BACnet configuration; the read property service with only one object. The table also shows
that memory consumption increases with the complexity of the services and, in the case of

System configuration Memory requirements
Read prop. (#Al) | Write prop. (#80) | COV (#Subscr.) || ROM (Bytes) | RAM (Bytes)

Only base Contiki & ulP system 25772 1054

Yes (1) No No 39934 1472

Yes (1) Yes (1) No 44516 1524

Yes (1) No Yes (1) 43924 1554

Yes (1) No Yes (2) 43940 1636

Yes (1) Yes (1) Yes (1) 48506 1606

Yes (2) Yes (1) Yes (1) 48510 1606

Table 6.1. Memory consumption for different BACnet configurations

COV, the number of subscribers. For example, each additional COV subscriber requires 16
bytes ROM and 82 bytes RAM.

The results in Table 6.2 do not include any multi-hop functionality since routing proto-
cols are not part of the ulP stack. See Section 6.3 for an evaluation of a simple multi-hop
protocol on the ESB nodes.

The memory consumption of our current implementation can be reduced. Since our
implementation is derived from the reference implementation, which is not optimized for
small memory usage, there is still room for further reduction. For example, binary values
are implemented as 32-bit integers as defined by the network protocol but could be reduced
to 8-bit in the implementation. Such an improvement would not only reduce the static
memory usage but also the stack usage since system calls would require less stack. We
further measure and discuss stack usage in Section 6.3.1.

6.3 BACnet and Multi-hop communication

Since multi-hop communication is essential for scalable sensor network solutions we
measure the memory consumption of BACnet and a simple multi-hop protocol. The multi-
hop protocol we use is an Ad hoc On-demand Distance Vector (AODV) protocol [16] which
is part of the Contiki system. To decrease memory consumption, the protocol is limited to 8
routing entries. The rest of the system is left unchanged; the TCP/IP packets with BACnet
data are just tunneled and forwarded to its final destination just above the MAC layer.

The extra memory required by the AODV routing protocol limits possible BACnet con-
figurations. For example, we are not able to combine the COV service and the multi-hop
functionality when using this, non-optimized, BACnet implementation,

Table 6.3 shows the memory requirements of the configuration with and without the
routing protocol. In these measurements we use a configuration with both the read property
and write property services enabled. The write property service enables a sensor node to
control external devices.

| Setup | ROM [RAM | Stack available |
Without multi-hop 44516 | 1524 122
With multi-hop (AODV) | 45630 | 1596 50

Table 6.2. Memory consumption with the AODV multi-hop protocol

6.3.1 Stack usage analysis

To analyze the actual memory requirements during run-time we use the MSPsim MSP430
emulator [10] connected to the Contiki OS sensor network simulator COOJA [15]. We
measure the stack usage during different events in the system to compute the total memory
usage. The results from the simulation confirm our earlier discussion about the need to

optimize the BACnet implementation for the intended low-memory platforms. The object-
oriented design of BACnet and its reference implementation requires a lot of memory to
handle incoming network packets. The reason for this is that each packet is structured into
a set of headers and each header is handled in its own function. And each function call
has several 32-bit arguments which are placed on the stack. Since these calls get deeper
for each handled header and more stack is required for every such function call, the stack
usage peaks during the packet handling.

The results from the stack analysis show that handling a new incoming packet requires
around 400 bytes of RAM. Table 6.3 shows the minimum amount of available memory
measured during a simulation. With the AODV protocol the lowest amount of available
memory measured is only 50 bytes. This is dangerously close to stack overflow which may
cause the system to malfunction. Figure 6.1 shows an overview of the stack memory usage
during an incoming radio packet. The duration of the graph is 8 milliseconds.

500

450
400

350

300
250 H
200

150

100

50

0

Figure 6.1. The available memory decreases significantly during packet
handling (bytes)

6.3.2 Example demo network

To demonstrate and further test our BACnet implementation we setup a simple test net-
work using the above configuration. One ESB node acts as a gateway between the WSN
and a PC, and all sensor nodes use the AODV multi-hop protocol. The gateway and the ESB
communicates using SLIP over a serial line. The gateway is needed only for intercepting
radio communication; no other conversion is needed since the WSN already communicates
via TCP/IP.

To test the write property service, we connect one of the ESB nodes to a hairdryer,
hence emulating a tiny building automation system. On the PC we use the Visual Test Shell
(VTS) [2], a well-known Win32 BACnhet testing application. To automatically interact with
the network we also developed a small network visualizer. A screenshot of the visualizer
is shown in Figure 6.2.

VTS - [wisd.clg]

D@8 XV e

» gEEO0? @

Bwwm - #
[Timestamp [Port I sowce | Destiatin | Servies Type
153900375 W2 P €58 #40(gw) Lam, DEVICE_1024
15:39:09 921 Win32 SLIP E5B #40 (gw) 1-4m, DEVICE_102¢
154602480 Wnd2 AP £55 44 () RasdPraperty, ID=15, ANALOG-INPLIT_0, Presant aus
15:46:02 875 Win32 SLP €SB #44 (fd) ReadProparty-ACK, [D=18, ANALOG-INPUT 0, Present value = 22.0
15:46:04 671 Win32 SLIP ESB #44 (Fwel) ReadPraperty, ID=13, ANALOG-INPUT_O, Present_Vahue
15:46105 781 Win32 SLIP €SB #44 (fnd) ReadProperty-ACK, [D=19, ANALOG-INPUT 0, Present_Value = 22.0
15:46:07 062 Win32 SLIP ESB #44 (Fwd) ReadPraperty, ID=20, ANALOG-INPUT_0, Present _Vahue
15:46:07 734 Win32 SLIP €38 #44 (fnd) FReadPraperty-ACK, [D=20, ANALOG- INPUT 0, Present Value = 22.0
15:46:47.750 Win32 SLIP ESB #87 (remote) \hiteProperty, 1D=21, BINARY-OUTPUT 0, Present_Value
1SH6S4281 W2 P €58 #67 (remote) witeProperty, ID=22, GINARY-OUTPLT_0,
159656015 W32 SLP . 2 T s o
1SHaE062 W32 P
154346531 W32 P
15495357 WinR2 &P
159512 W2 AP
ISH9S55% W2 6P
IS0 Wz AP
126712312 W2 P
12875210 Wz AP
12575625 W2 SLP
12874779 Wn32 S
126748281 W AP
128740521 W2 AP
12570265 W2 P
126923921 W2 AP
125924968 Wz P
1269995 W2 S
12suTess w2z ap
13001508 Wind2 SLP
13001065 a2 S
130026659 Wind2 SLP
130041208 Win32 S
130046609 Win32 SLP
130040187 Win2 S
130205453 Wina2 P
130212187 Wn2 P
30212921 WnRSP
130217140 W2 AP
301762 W2 AP
130219078 W2 AP
130219765 W2 8P
130205 Wz AP
130220780 w32 &P
130222109 W2 AP
130222687 WinR2 &P
130225031 W32 P

Figure 6.2. VTS and demo network application screenshot

Chapter 7

Related Work

Kintner-Meyer and Conant [13] report on their experiences from deployments of wireless
sensor networks for building automation. Their focus is mainly on the monetary cost com-
pared to wireless solutions. They use simple sensors that transmit temperature readings at
predefined intervals to mains-powered receivers whereas we actually implement a building
automation protocol on the sensor nodes which is a more generic solutions enabling all
kinds of services.

EnOcean [9] is a spin-off company of Siemens providing control and sensing devices
using wireless technology. The primary product focuses are smart energy sensors, battery
less wireless devices using energy scavenging such as piezoelectric, solar, and electrody-
namics. A typical building automation product from EnOcean is a wireless light switch
using a piezoelectric element to generate enough power to send an on/off signal to the co-
ordinator. Each battery less device connects to a line or battery powered coordinator in a
star network topology. Each coordinator can then connect to other coordinators using Zig-
Bee in a star/mesh network. A proprietary transmission protocol is used for the wireless
devices whereas we build on standard protocols such as TCP/IP and BACnet and focus on
the integration of WSN and BACnet.

KNX [1] is, similar to BACnet, a standard for building control. KNX is open, royalty-
free and sustains platform independency by issuing certificates to vendors. In comparison
with BACnet, KNX also focuses on smaller buildings such as home control.

Recent research on KNX in the wireless domain [19] argues that the benefits of wire-
less BAS include reduced installation costs, enabling sensor coverage where cabling is
impossible, and enabling more flexible ad-hoc communication abilities. A prototype im-
plementation of a wireless system supporting KNX uses, similar to our solution, a MSP430
micro-controller. However, in their system the MSP430 only acts as a gateway to the wire-
less sensor network. The micro-controller is connected to a 802.15.4 Chipcon 2420 radio
transceiver [6], and to another dedicated KNX-controller device. All KNX data is handled
by the KNX-controller and is sent to the MSP430 which in turn sends it on the network.
In comparison, our solution has an entire BACnet-compatible system, including operating
system and TCP/IP communication stack, on only one MSP430 micro-controller. By using
only one micro-controller the final system is both cheaper and less energy consuming.

13

Chapter 8

Conclusions and Future Wor k

Large overhead costs including installation and maintenance in building automation system
can be reduced by using wireless sensor networks. We have implemented and evaluated
the open BACnet standard on top of a wireless sensor network. The results show that stan-
dard solutions, not originally designed for wireless sensor networks, such as BACnet and
TCP/IP networking can successfully be applied in this domain. We have also identified the
Change of Value service as particularly important when integrating building automation
systems and wireless sensor networks. Future work includes further adapting the BACnet
implementation to fit the resource-limited sensor nodes. Future work also includes evaluat-
ing different WSN energy saving techniques such as sleep-scheduling suitable for BACnet
applications.

14

Acknowledgement and Source
Code Avallability

This work has been funded by the Swedish Energy Authority. Please contact the authors
for more information. Note also that the source code is available on request. The source
code for Contiki and ulP can be found at ht t p: / / www. si cs. se/ nes.

15

Bibliography

[1] Konnex association. Web page. 2006-10-27. ht t p: / / www. konnex. or g
[2] Visual test shell for bacnet. Web page. ht t p: / / sour cef or ge. net/ proj ect s/ vts/

[3] ASHRAE. BACnet - A Data Communication Protocol for Building Automation and
Control Networks, ansi/ashrae standard 135-2004 edition, 2004.

[4] ASHRAE. Bacnets home page. Online, 2007. ht t p: / / ww. bacnet . org

[5] Frank Capuano. Open systems: Lonworks technology and bacnet standard. White
paper, 2001.

[6] Chipcon AS. CC2420 Datasheet (rev. 1.3), 2005. ht t p: / / www. chi pcon. cont

[7] A. Dunkels. Full TCP/IP for 8-bit architectures. In Proceedings of The First Inter-
national Conference on Mobile Systems, Applications, and Services (MOBISYS “03),
May 2003.

[8] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible operating
system for tiny networked sensors. In Proceedings of the First IEEE Workshop on
Embedded Networked Sensors, Tampa, Florida, USA, November 2004.

[91 ENOCEAN. Enocean home page. Online, 2007. ht t p: / / www. enocean. de

[10] J. Eriksson, A. Dunkels, N. Finne, F. sterlind, and T. Voigt. Mspsim — an extensi-
ble simulator for msp430-equipped sensor boards. In Proceedings of the European
Conference on Wireless Sensor Networks (EWSN), Poster/Demo session, Delft, The
Netherlands, January 2007.

[11] Texas Instruments. Msp430 ultra-low power microcontroller web page. Web page.
http://ww.ti.conl nmsp430

[12] W. Kastner, G. Neugschwandtner, S. Soucek, and H.M. Newmann. Communication
systems for building automation and control. Proceedings of the IEEE, 93(6):1178—
1203, June 2005.

[13] M. Kintner-Meyer and R. Conant. Opportunities of wireless sensors and controls for
building operation. In In Proceedings of 2004 ACEEE Summer Study on Energy Ef-
ficiency in Buildings, pages 3-139-3-152. American Council for an Energy-Efficient
Economy, Washington, DC., 2004.

[14] Modbus-IDA. MODBUS APPLICATION PROTOCOL SPECIFICATION, version
1.1a edition, June 2004.

[15] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level sensor
network simulation with cooja. In Proceedings of the First IEEE International Work-
shop on Practical Issues in Building Sensor Network Applications (SenseApp 2006),
Tampa, Florida, USA, November 2006.

16

[16] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector (aodv)
routing. RFC 3561, Internet Engineering Task Force, 2003.

[17] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low power wireless
research. In Proc. IPSN/SPOTS’05, Los Angeles, CA, USA, April 2005.

[18] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava. Energy aware wireless
microsensor networks. IEEE Signal Processing Magazine, 19(2):40-50, March 2002.

[19] Reinisch, Granzer, Neugschwandtner, Praus, and Kastner. Wireless communication
in knx/eib. In Proceedings of the KNX Scientific Conference 2006, Institute of Au-
tomation, Vienna University of Technology, 2006.

[20] RF Monolithics. 868.35 MHz Hybrid Transceiver TR1001, 1999.
http://ww. rfmcom

[21] Jochen H. Schiller, Achim Liers, Hartmut Ritter, Rolf Winter, and Thiemo \Voigt.
Scatterweb - low power sensor nodes and energy aware routing. In HICSS, 2005.

[22] L. Zheng and H. Nakagawa. Opc (ole for process control) specification and its devel-
opments. In Proceedings of the 41st SICE Annual Conference, pages 917-920 vol.2,
Osaka, Japan, August 2002. SICE 2002.

