Strong normalizability in
Martin-Löf’s Type Theory

by

Claes Löfwall and Gunnar Sjödin

May 1991

Swedish Institute of Computer Science
Box 1263, S-164 29 KISTA, SWEDEN
Strong normalizability in
Martin-Löf’s Type Theory

Clas Löfwall and Gunnar Sjödin

Swedish Institute of Computer Science
Box 1263, S-164 28, KISTA, Sweden

SICS research report R91:09
May 15, 1991

Abstract

In this paper we prove that any subexpression of a correct judgement in Martin-Löf’s Type Theory is strongly normalizable. We use the well-established technique with a “computability predicate”. The logic used in the proof is classical set theory.
Contents

1 Introduction 4

2 Correct Judgements 6
 2.1 Syntactic equality and substitution 6
 2.2 Rules 7
 2.2.1 Strong equality 7
 2.2.2 General Rules 8
 2.2.3 judge-cat 8
 2.2.4 judge-N 9
 2.2.5 judge-II 10
 2.2.6 judge-Eq 10
 2.2.7 judge-U 11
 2.3 Definitions 11

3 φ-rules and strong normalizability 13
 3.1 The rules 14
 3.1.1 eni 14
 3.1.2 cat 15
 3.1.3 set 15
 3.1.4 N 16
 3.1.5 II 16
 3.1.6 Eq 17
 3.1.7 U 17
 3.2 Strong normalizability 18

4 Stability of φ 20
 4.1 F-eni, G eni 23
 4.2 F-cat, G $\equiv (x \in A)B$ 24
 4.3 F-set, G $\equiv \text{set}$ 24
 4.3.1 F-eni 25
 4.3.2 F-N, e $\equiv N$ 25
 4.3.3 F-II, e $\equiv \Pi(A,B) A,B$ normal 25
 4.3.4 F-Eq, e $\equiv \text{Eq}(A,a,b)$ 27
 4.3.5 F-U, e $\equiv U$ 27
 4.4 F-N, G $\equiv N$ 28
 4.5 F-II, G $\equiv \Pi(A,B)$ 28
 4.6 F-Eq, G $\equiv \text{Eq}(A,a,b)$ 28
 4.7 F-U, G $\equiv U$ 29
 4.7.1 e $\equiv n$ 30
 4.7.2 e $\equiv \pi(a,b)$ 30
 4.7.3 e $\equiv \text{eq}(a,b,c)$ 31
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Finishedness and reduction of (\varphi)</td>
</tr>
<tr>
<td>6 Properties of (\Phi)</td>
</tr>
<tr>
<td>6.1 Auxiliary results concerning (\Phi)</td>
</tr>
<tr>
<td>6.2 (\Phi)-rules</td>
</tr>
<tr>
<td>6.3 Induction methods</td>
</tr>
<tr>
<td>7 The main theorem</td>
</tr>
<tr>
<td>7.1 Preliminaries</td>
</tr>
<tr>
<td>7.2 Proof of the ultra-correctness lemma</td>
</tr>
<tr>
<td>7.2.1 Principles for the inner induction</td>
</tr>
<tr>
<td>7.2.2 Strong equality</td>
</tr>
<tr>
<td>7.2.3 General rules</td>
</tr>
<tr>
<td>7.2.4 judge-cat</td>
</tr>
<tr>
<td>7.2.5 judge-N</td>
</tr>
<tr>
<td>7.2.6 judge-II</td>
</tr>
<tr>
<td>7.2.7 judge-Eq</td>
</tr>
<tr>
<td>7.2.8 judge-U</td>
</tr>
<tr>
<td>A Appendix - Convertibility and equality</td>
</tr>
<tr>
<td>Acknowledgement</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>
1 Introduction

Constructive mathematics as it was developed by Bishop [Bis67] has got a formal basis in Per Martin-Löf’s type theory. This theory contains four kinds of judgements, namely

- A is a category
- A and B are equal categories
- a is an element in A
- a and b are equal elements in A.

Martin-Löf has pointed out that all these judgements are decidable. In particular, it is decidable whether an expression is a proof of a proposition or not. This gives an algorithm for proof checking. The termination of the algorithm depends on the fact that an expression that occurs in a correct judgement has a value or, in other words, every such expression has a normal form. In this paper, we prove strong normalization, i.e., every reduction path from an expression in a correct judgement leads to a unique normal form. There is a lot of normalization proofs for different formal systems in the literature. In [Gir71], [ML71a], [ML71b] and [Pra71] Girard, Martin-Löf and Prawitz used a new technique for proving normalization, extending Tait’s method, cf. [Tai67], by combining it with the Curry-Howard correspondence, i.e. the “formulas-as-types” principle, cf. [How80]. They defined a predicate (called “computable” by Martin-Löf) as a middle step in the proof. In [ML72] Martin-Löf used this technique to prove normalization for an earlier version of type theory (without the equality type and categories). Since a normalization proof is a kind of consistency proof, he has also claimed that normalization should follow from the semantic explanations of the judgements and the fact that all the inference rules are true with these explanations. But so far we have not seen such an argument which gives normalization for expressions with free variables.

Catarina Svensson has in [Sve90] given a normalization proof for a type theory including the equality type but not categories. Her notation is polymorphic, i.e., an expression does not contain information about its type. This is of no importance for the normalization proof, but to get the algorithm for proof checking mentioned above, the monomorphic notation is the relevant one. The proofs in [Sve90] and [ML72] differ in the definition of the computability predicate. It is easier in [Sve90] than in [ML72] to prove that the predicate is well-defined, but in neither of them there is an explicit proof of this.

In this paper we use induction over a transfinite “time” interval to define the computability predicate, and we prove that the predicate is well-defined. Our version of type theory includes categories and the equality type, but of the other standard types we only study the natural numbers, the function type and the
universe. We do not think that any essentially new phenomenon occurs when the other standard types are added.

In section 2 there is given a sequence of rules, which defines the notion of a correct judgement as something which is formally obtained by applying finitely many of the rules. The reduction rules are obtained from the rules named "calc", e.g., app((x)b,a) → b(x := a) and T(n) → N. In the appendix we derive some properties, needed in the proof, of this formal system. However, for the so called "consistency property" we rely on [Coq90].

The purpose of this paper is to prove the following (cf. theorem 7.1 on page 49):

if a is a category or a is an element in A is a correct judgement, then
a is strongly normalizable, i.e., any sequence of reductions from a
will eventually stop.

We will rely on classical logic and set theory. For each correct judgement of
the form "A is a category", the terms of type A is the set of expressions a such
that a ∈ A is correct. We define a subset Φ(A) of the set of terms of type A,
which may be thought of as the set of "computable" terms of type A. We prove
that if a ∈ Φ(A) then a is strongly normalizable, and that Φ(A) equals the set
of terms of type A, if "A is a category" is correct.

We define the sets Φ(A) as the union of increasing sets ϕt(A), where t belongs
to a "time" interval of ordinal numbers (below the first uncountable ordinal).
At each time t we apply one of the rules given in section 3 for which the premiss
but not the conclusion is true at time t. At time 0, ϕ0(A) = ∅ for all A. Among
the conclusions are A open and A finished, which we have introduced to handle
a problem in defining Φ. If ϕt(A) ≠ ∅, then A open has been reached before
time t. If A finished is reached at time t, it is true that ϕs(A) = ϕt(A) for
s ≥ t (we say that A is stable). This does not follow immediately from our rules,
but is the content of one of our main lemmas. We need this property to be able
to use an induction principle introduced in section 7, which depends on lemma
6.3.1 on page 45.
2 Correct Judgements

The following is a set of generating rules for correct judgements in an incomplete version of Per Martin-Löf's type theory. We include the formation of categories, but the only type formations we study are: The natural numbers \mathbb{N}, the function-type $\Pi(A,B)$, the equality-type $\text{Eq}(A,a,b)$ and the type of all small types U. We write $A \text{ cat}$, $A=B$, $a \in A$ and $a=b \in A$ for the four judgements

- A is a category
- A and B are equal categories
- a is an element in A
- a and b are equal elements in A

A judgement under assumptions is written $JUDGE(\text{assump})$ where $JUDGE$ is one of the four judgement forms above and where assump is a list of assumptions. An assumption list, $(x_1 \in A_1, \ldots, x_n \in A_n)$, may also be written in vector notation, $(x \in A)$. There may be a hidden, constant, list of assumptions in all the judgements of a rule, except the rules with no premises. This list is implicit to the left of all explicit assumptions. We will say that a judgement "is correct", if it is formally derivable from the rules given in 2.2, but usually we will omit the phrase "is correct". The category of all types is written set and the category of functions from A to B is written $(x \in A)B$. If $b \in B (x \in A)$ then the intended meaning of $(x)b$ is the corresponding function in $(x \in A)B$. If $b \in (x \in A)B$ and $a \in A$ then $\text{app}(b,a)$ is the element in B obtained by applying b to a. We have chosen the non-standard notation $\text{app}(b,a)$ (instead of $b(a)$) to be able to treat the formula $\text{app}((x)b,a)$ syntactically in the same way as the other maximum formulas. The successor function considered as an object of $(x \in N)N$ is written $(x)s(x)$, while s itself does not belong to the language. The natural number 1 is written $s(0)$ and it is a correct judgement that $s(0)=\text{app}((x)s(x),0) \in N$. The elimination forms corresponding to N, Π and Eq are written N-elim, Π-elim and Eq-elim respectively. The canonical element in $\text{Eq}(A,a,a)$ is written $\text{id}(A,a)$. The elements in U corresponding to N, Π, Eq are written n, π, eq respectively and the map from U to set is written T, so that e.g. $T(n) = N \in \text{set}$.

2.1 Syntactic equality and substitution

A pointer expression, p.e., is defined recursively by the following clauses

1. A variable is a p.e.

2. If f is a "constructor" (e.g. s, Eq, N-elim, app) of arity n, and a_1, \ldots, a_n are p.e.s, then $f(a_1, \ldots, a_n)$ is a p.e.

3. If b is a p.e. and x is a variable, then we get a new p.e. obtained from $(x)b$ by adding pointers from $*$ to all occurrences of x in b and at the same time erasing the x's. This p.e. is denoted by $(x)b$.
4. If a and b are p.e.s and x is a variable, then a new p.e. is obtained from $(\ast \in a)b$ by adding pointers from \ast to all occurrences of x in a and b and at the same time erasing the xs. This p.e. is denoted by $(x \in a)b$.

The pointer expressions are our syntactic units; by abuse of language we will, when convenient, refer to them simply as expressions. If b and a are (pointer) expressions then $b(x:=a)$ is the expression that is obtained by replacing every x in the pointer expression b with the pointer expression a. Using this definition, we see that if b' is a p.e., denoted by $(z)b$, and a is a p.e., then $b(x:=a)$ only depends on b' and a. Similarly, if b' is a p.e., denoted by $(x \in c)b$, and a is a p.e., then $b(x:=a)$ only depends on b' and a. Note that, if b is a p.e. and x and y are variables, where y does not occur in b, then $(z)b$ and $(y)b(x:=y)$ denote the same p.e.

2.2 Rules

2.2.1 Strong equality

=1

\[
\frac{a \in A}{a = a \in A}
\]

=2

\[
\frac{A \mathtt{cat}}{A = A}
\]

=3

\[
\frac{a = b \in A}{b = a \in A}
\]

=4

\[
\frac{A = B}{B = A}
\]

=5

\[
\frac{a = b \in A, b = c \in A}{a = c \in A}
\]

=6

\[
\frac{A = B, B = C}{A = C}
\]

=7

\[
\frac{a \in A, A = B}{a \in B}
\]

=8

\[
\frac{a = b \in A, A = B}{a = b \in B}
\]
2.2.2 General Rules

judge-assumption

\[
\begin{array}{c}
A \text{ cat} \\
\hline
x \in A \ (x \in A)
\end{array}
\]

Here \(x \) is a "new" variable, i.e. \(x \) is not one of the variables in the hidden assumption list.

judge-assumption-addition

\[
\begin{array}{c}
A \text{ cat} , \text{ JUDGE} \\
\hline
\text{ JUDGE} \ (x \in A)
\end{array}
\]

where \(x \) is a "new" variable.

2.2.3 judge-cat

judge-cat-1

\[
\text{ set cat}
\]

judge-cat-2

\[
\begin{array}{c}
A \in \text{ set} \\
\hline
A \text{ cat}
\end{array}
\]

judge-cat-2'

\[
\begin{array}{c}
A = B \in \text{ set} \\
\hline
A = B
\end{array}
\]

judge-cat-3

\[
\begin{array}{c}
B \text{ cat} \ (x \in A) \\
\hline
(x \in A)B \text{ cat}
\end{array}
\]

judge-cat-3'

\[
\begin{array}{c}
A = A' , B = B' \ (x \in A) \\
\hline
(x \in A)B = (x \in A')B'
\end{array}
\]

judge-cat-4

\[
\begin{array}{c}
b \in B \ (x \in A) \\
\hline
(x)b \in (x \in A)B
\end{array}
\]

judge-cat-4'

\[
\begin{array}{c}
b = b' \in B \ (x \in A) \\
\hline
(x)b = (x)b' \in (x \in A)B
\end{array}
\]
2.2 Rules

judge-cat-5 (elimination-rule)

\[
\frac{B \text{ cat } (x \in A), a \in A, b \in (x \in A)B}{\text{app}(b, a) \in B(x:=a)}
\]

judge-cat-5'

\[
\frac{a = a' \in A, B \text{ cat } (x \in A), b = b' \in (x \in A)B}{\text{app}(b, a) = \text{app}(b', a') \in B(x:=a)}
\]

judge-cat-6-calc

\[
\frac{a \in A, b \in B (x \in A)}{\text{app}((x)b, a) = b(x:=a) \in B(x:=a)}
\]

2.2.4 judge-N

judge-N-set

\[
\frac{}{N \in \text{set}}
\]

judge-N-0

\[
\frac{}{0 \in N}
\]

judge-N-s

\[
\frac{a \in N}{s(a) \in N}
\]

judge-N-elim

\[
\frac{C \in (x \in N)\text{set}, a \in N, b \in \text{app}(C,0), \quad d \in (x \in N)(y \in \text{app}(C,x))\text{app}(C,s(x))}{\text{N-elim}(C,a,b,d) \in \text{app}(C,a)}
\]

judge-N-0-calc

\[
\frac{C \in (x \in N)\text{set}, b \in \text{app}(C,0), \quad d \in (x \in N)(y \in \text{app}(C,x))\text{app}(C,s(x))}{\text{N-elim}(C,0,b,d) = b \in \text{app}(C,0)}
\]

judge-N-s-calc

\[
\frac{C \in (x \in N)\text{set}, a \in N, b \in \text{app}(C,0), \quad d \in (x \in N)(y \in \text{app}(C,x))\text{app}(C,s(x))}{\text{N-elim}(C,s(a),b,d) = \text{app}(\text{app}(d,a),\text{N-elim}(C,a,b,d)) \in \text{app}(C,s(a))}
\]
2.2.5 judge-II

judge-II-set

\[A \in \text{set}, \ B \in \{ x \in A \} \text{set} \]
\[\Pi(A,B) \in \text{set} \]

judge-II-λ

\[A \in \text{set}, \ B \in \{ x \in A \} \text{set}, \ b \in \{ x \in A \} \text{app}(B,x) \]
\[\lambda(A,B,b) \in \Pi(A,B) \]

judge-II-elim

\[A \in \text{set}, \ B \in \{ x \in A \} \text{set}, \ C \in \{ x \in \Pi(A,B) \} \text{set}, \]
\[a \in \Pi(A,B), \ d \in \{ y \in \{ x \in A \} \text{app}(B,x) \} \text{app}(C,\lambda(A,B,y)) \]
\[\Pi\text{-elim}(A,B,C,a,d) \in \text{app}(C,a) \]

judge-II-λ-calcal

\[A \in \text{set}, \ B \in \{ x \in A \} \text{set}, \ C \in \{ x \in \Pi(A,B) \} \text{set}, \]
\[b \in \{ x \in A \} \text{app}(B,x), \]
\[d \in \{ y \in \{ x \in A \} \text{app}(B,x) \} \text{app}(C,\lambda(A,B,y)) \]
\[\Pi\text{-elim}(A,B,C,\lambda(A,B,b),d) = \text{app}(d,b) \in \text{app}(C,\lambda(A,B,b)) \]

2.2.6 judge-Eq

judge-Eq-set

\[A \in \text{set}, \ a \in A, \ b \in A \]
\[\text{Eq}(A,a,b) \in \text{set} \]

judge-Eq-id

\[A \in \text{set}, \ a \in A \]
\[\text{id}(A,a) \in \text{Eq}(A,a,a) \]

judge-Eq-elim

\[A \in \text{set}, \ a \in A, \ b \in A, \]
\[C \in \{ x \in A \} \{ y \in A \} \{ z \in \text{Eq}(A,x,y) \} \text{set}, \]
\[g \in \text{Eq}(A,a,b), \ d \in \{ x \in A \} \text{app}(\text{app}(C,x,x),\text{id}(A,x)) \]
\[\text{Eq-elim}(A,a,b,C,g,d) \in \text{app}(\text{app}(C,a,b),g) \]

judge-Eq-id-calcal

\[A \in \text{set}, \ C \in \{ x \in A \} \{ y \in A \} \{ z \in \text{Eq}(A,x,y) \} \text{set}, \]
\[e \in A, \ d \in \{ x \in A \} \text{app}(\text{app}(C,x,x),\text{id}(A,x)) \]
\[\text{Eq-elim}(A,e,c,e,C,\text{id}(A,e),d) = \text{app}(d,e) \in \]
\[\text{app}(\text{app}(C,e,c),\text{id}(A,e)) \]
2.3 Definitions

2.2.7 judge-U

judge-U-set

\[U \in \text{set} \]

judge-U-T

\[a \in U \]
\[T(a) \in \text{set} \]

judge-U-n

\[n \in U \]

judge-U-n-calc

\[T(n) = N \in \text{set} \]

judge-U-π

\[a \in U, b \in (x \in T(a))U \]
\[\pi(a,b) \in U \]

judge-U-π-calc

\[a \in U, b \in (x \in T(a))U \]
\[T(\pi(a,b)) = \Pi(T(a),(x)T(\text{app}(b,x))) \in \text{set} \]

judge-U-eq

\[a \in U, b \in T(a), c \in T(a) \]
\[\text{eq}(a,b,c) \in U \]

judge-U-eq-calc

\[a \in U, b \in T(a), c \in T(a) \]
\[T(\text{eq}(a,b,c)) = \text{Eq}(T(a),b,c) \in \text{set} \]

2.3 Definitions

Definition 2.3.1 (Reduction) For any expressions \(a \) and \(b \)

\[a \rightarrow b \]

means that there is a subexpression \(c \) of \(a \) and an instance of a rule above named \("\text{calc}" \) with conclusion of form \(c = d \in A \) and \(b \) is obtained by replacing \(c \) with \(d \) in \(a \).

Note that in the case of judge-II-λ-calc the left hand side of the rule is replaced by II-elim(\(A,B,C,λ(D,E,b),d \)) and in the case of judge-Eq-id-calc the left hand side of the rule is replaced by Eq-elim(\(A,a,b,C,\text{id}(D,e),d \)).

Furthermore,
a \rightarrow^* b

means that a \rightarrow \ldots \rightarrow b or a = b.

(definition 2.3.1)

Definition 2.3.2 (Normality) An expression a is said to be normal if there is no b such that a \rightarrow b.

(definition 2.3.2)

Definition 2.3.3 (Strong normalizability) An expression a is said to be strongly normalizable, abbreviated "a sn", if every sequence

a = a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow \ldots

is finite.

(definition 2.3.3)

Definition 2.3.4 (Convertibility) The relation \text{conv} on expressions is the equivalence relation generated by \ " a \rightarrow b " . As usual "expressions" should be read as "pointer expressions".

(definition 2.3.4)

Lemma 2.3.1 (Church-Rosser) Let a,b,c be expressions such that a \rightarrow^* b and a \rightarrow^* c. Then there is an expression d such that b \rightarrow^* d and c \rightarrow^* d.

(lemma 2.3.1)

PROOF By the "Tait/Martin-Löf" method. See e.g. [ML72].

Definition 2.3.5 (Normal form) Let a be an expression. If there is a reduction

a \rightarrow^* b

such that b is normal, then this b is denoted \(\tilde{a} \). Note that according to lemma 2.3.1 , \(\tilde{a} \) is unique if it exists.

(definition 2.3.5)
3 \(\phi \)-rules and strong normalizability

The conclusions of the rules are of the type \(a \in \varphi(A) \), \(A \) open or \(A \) finished, where \(a \) and \(A \) are expressions obtained from derivations in the formal system defined in section 2 extended by the following rules for constants, for \(1 \leq n < \infty \)

\[
\frac{A \text{ cat}}{A_n \in A}
\]

Note that \(A \) is not considered to be a subexpression of \(A_n \) and hence the constants are normal. It follows that there are at most countably many possible conclusions, so it is enough to consider the time interval from 0 to the first uncountable ordinal. In the rules below we have omitted the index \(t \) in \(\varphi_1(A) \). If a rule is applied at time \(t \), \(\varphi(A) \) above the line should be replaced by \(\bigcup_{s < t} \varphi_s(A) \) and \(\varphi(A) \) below the line by \(\varphi_t(A) \).

If \(A \) open or \(A \) finished is proved at time \(t \), it is considered to be true for all points of time after \(t \).

An assumption \(a \) elim means that \(a \) is a constant or the leftmost form of the expression \(a \) is one of \(\text{app}, T, \text{N-elim}, \text{II-elim}, \text{Eq-elim} \). An assumption \(a \) intro means that \(a \) elim is false. An assumption \(a \) eni means that \(a \) is not a normal intro.

The following notations and conventions are used in the sequel:

- **F** = The finished-rules, i.e. the rules which have a conclusion of the form \(A \) finished.
- **R** = The rules below except the finished-rules and the \(\varphi \)-completed rule.
- **ALL-RULES** = The rules below except the \(\varphi \)-completed rule.

We write e.g.

\(A \) open \(\prec a \in \varphi(A) \)

to mean that \(A \) open is shown earlier than \(a \in \varphi(A) \). Here \(A \) open and \(a \in \varphi(A) \) are, by abuse of language, used for the ordinal \(t \) at which the respective properties are shown.

When we have a premiss \(P \), written as a judgement, e.g. \(a \in A \), this is to be understood as "\(P \) can be proved to be a correct judgement, using the rules for correct judgements". Note that we have no hidden assumptions in such judgements. Thus, the rules only produce statements about finished, open or \(\varphi \) for expressions without variables (recall that \(\text{expression} \) means \(\text{pointer expression} \) so a "free" variable is the same as a variable).

A rule is applicable at a certain time if the premisses of the rule are satisfied and the conclusion has not been shown. With this restriction on the use of the \(\varphi \)-rules, it follows that every proved conclusion is associated with exactly
one instance of a rule (though it may depend on the particular choices in our proof-path that we have made).

A rule is said to be ready at a point of time if its premisses are satisfied. Note that

\[\text{The rule X is applicable } \iff \text{The rule X is ready and its conclusion is not yet drawn} \]

A premiss of implication form such as

\[a \rightarrow b \implies b \in \varphi(A) \]

in the rules below, should be read as: For every \(b \) such that \(a \rightarrow b \), we have \(b \in \varphi(A) \).

3.1 The rules

Rules valid for every category:

general-A\(\varphi\)

\[
\text{A open,} \\
\overset{a \in A, a \text{ elim }, (a \rightarrow b) \implies b \in \varphi(A)}{a \in \varphi(A)}
\]

3.1.1 eni

Op-eni

\[
\text{A cat, A eni, } (A \rightarrow B) \implies B \text{ finished} \\
\text{A open}
\]

insert-eni\(\varphi\) (introduction rule for a category on eni form)

\[
\text{A open,} \\
\overset{A \text{ cat, } A \rightarrow B, b \in \varphi(B), b \text{ intro}}{b \in \varphi(A)}
\]

F-eni

\[
\text{A open,} \\
\overset{A \text{ cat,} }{A \text{ eni,} } \\
\overset{\text{no rule in } R \text{ is applicable}}{A \text{ finished}}
\]
3.1 The rules

3.1.2 cat

Eventually, we will interpret A cat with A open but we do not define φ(cat) (in case we would, it would consist of all categories A such that A finished). The following rules are about A:s such that A cat.

Op-cat A,B normal

\[
\begin{array}{c}
A \text{ finished}, B \text{ cat } (x \in A), a \in \varphi(A) \implies B(x:=a) \text{ open} \\
(x \in A)B \text{ open}
\end{array}
\]

(Note that to write B(x:=a) finished instead of open in the premisses would create problems e.g. when B ≡ set.)

abstrφ A,B normal

\[
\begin{array}{c}
(x \in A)B \text{ open}, \\
b \in B (x \in A), a \in \varphi(A) \implies b(x:=a) \in \varphi(B(x:=a)) \\
(x)b \in \varphi((x \in A)B)
\end{array}
\]

F-cat A,B normal

\[
\begin{array}{c}
(x \in A)B \text{ open}, \\
\text{no rule in R is applicable,} \\
a \in \varphi(A) \implies B(x:=a) \text{ finished} \\
(x \in A)B \text{ finished}
\end{array}
\]

3.1.3 set

Op-set

\[
\begin{array}{c}
\text{set open}
\end{array}
\]

set-insertφ

\[
\begin{array}{c}
\text{set open,} \\
A \in \text{set}, A \text{ finished, } A \text{ intro} \\
A \in \varphi(\text{set})
\end{array}
\]
F-set

set open,
U finished,
no rule in ALL-RULES \ \{F-U, F-set \} is applicable
set finished

3.1.4 N

Op-N

N open

0φ

N open
0 ∈ φ(N)

sφ

N open,
a ∈ φ(N)
s(a) ∈ φ(N)

F-N

N open,
no rule in R is applicable
N finished

3.1.5 II

Op-II A,B normal

A ∈ set, A finished, B ∈ φ((x ∈ A) \set), (x ∈ A)app(B,x) finished
II(A,B) open
3.1 The rules

\(\lambda \varphi \, A,B \text{ normal} \)

\[
\begin{align*}
A &= A' \in \text{set} \ , \ B = B' \in (x \in A)\text{set} \ , \\
A' \in \text{sn} \ , \ B' \in \text{sn} \ , \\
\Pi(A,B) \text{ open} \ , \\
b \in \varphi((x \in A)\text{app}(B,x))
\end{align*}
\]

\[
\lambda(A',B',b) \in \varphi(\Pi(A,B))
\]

F-\Pi \ A,B \text{ normal}

\[
\begin{align*}
\Pi(A,B) \text{ open} \\
\text{no rule in } R \text{ is applicable}
\end{align*}
\]

\[
\Pi(A,B) \text{ finished}
\]

3.1.6 Eq

Op-Eq \ A,a,b \text{ normal}

\[
\begin{align*}
A \in \text{set} \ , \ A \text{ finished} \ , \ a \in \varphi(A) \ , \ b \in \varphi(A)
\end{align*}
\]

\[
\text{Eq}(A,a,b) \text{ open}
\]

id\(\varphi \) \ A,a \text{ normal}

\[
\begin{align*}
A &= A' \in \text{set} \ , \ a = a' \in A \ , \\
A' \in \text{sn} \ , \ a' \in \varphi(A) \ , \\
\text{Eq}(A,a,a) \text{ open}
\end{align*}
\]

\[
\text{id}(A',a') \in \varphi(\text{Eq}(A,a,a))
\]

F-Eq \ A,a,b \text{ normal}

\[
\begin{align*}
\text{Eq}(A,a,b) \text{ open} \\
\text{no rule in } R \text{ is applicable}
\end{align*}
\]

\[
\text{Eq}(A,a,b) \text{ finished}
\]

3.1.7 U

Op-U

\[
U \text{ open}
\]
3.2 Strong normalizability

Definition 3.2.1 (Φ) Let t be the time when ϕ completed is shown. For A cat, we let $\Phi(A) = \varphi_t(A)$ and A Φ-cat mean that A open has been shown before time t.

Lemma 3.2.1 (strong normalizability of computable terms) If $d \in \Phi(A)$ or if d Φ-cat then d is strongly normalizable.

PROOF It suffices to show, by induction on t, that

If $d \in \varphi(A)$ or if d open is shown at time t, then d is strongly normalizable.

We separate the proof into different cases, depending on how $d \in \varphi(A)$ or d open is shown.

general-Åφ. For all b, we have

$d \rightarrow b \Rightarrow b \in \varphi(A) \prec d \in \varphi(A)$

Hence, by induction, all one-step reductions of d are strongly normalizable, which implies that d is strongly normalizable.
3.2 Strong normalizability

Op-enh. For all $B, d \rightarrow B \Rightarrow B \text{ finished} \prec d \text{ open}$. Thus, $B \text{ open} \prec B \text{ finished} \prec d \text{ open}$, and hence, by induction, B is strongly normalizable. It follows that d is strongly normalizable.

\text{insert-enh}, d \equiv b. Then $b \in \varphi(B) \prec b \in \varphi(A)$ and hence b is strongly normalizable.

Op-cat, d \equiv (x \in A)B. By assumption, A and B are strongly normalizable and hence so is d.

\text{abstr}, d \equiv (x)b. Let $c \in A$ be a constant. Then, by \text{general}-A\varphi, $c \in \varphi(A)$ and therefore $b(x:=c) \in \varphi(A) \prec d \in \varphi((x \in A)B)$. By induction $b(x:=c)$ is strongly normalizable. Since c is a constant, it follows that b and hence d are strongly normalizable.

\text{set-insert}, d \equiv A. We have

$$A \text{ open} \prec A \text{ finished} \prec A \in \varphi(\text{set})$$

Hence, by induction A is strongly normalizable.

Op-N. Obvious.

0\varphi. Obvious.

s\varphi, d \equiv s(a). By induction, a is strongly normalizable.

Op-II, d \equiv \Pi(A,B). By assumption, A and B are strongly normalizable and hence so is d.

\lambda\varphi, d \equiv \lambda(A',B',b). By assumption A', B' are strongly normalizable and by induction b is strongly normalizable.

Op-Eq, d \equiv Eq(A,a,b). By assumption, A, a and b are strongly normalizable and hence so is d.

Op-U. Obvious.

U-insert\varphi, d \equiv a. We have

$$T(a) \text{ open} \prec T(a) \text{ finished} \prec a \in \varphi(U)$$

By induction, $T(a)$ is strongly normalizable and hence so is a.

\[\blacksquare\text{ (lemma 3.2.1)}\]
4 Stability of \(\varphi \)

Lemma 4.1 (\(\varphi(A) \) and \(\text{Term}(A) \)) The following holds

- \(A \) open \(\implies \) \(A \) cat
- \(a \in \varphi(A) \implies a \in A \)

Proof We prove both statements by induction on time. The only rules that are non-trivial to check are handled below.

insert-clm\(\varphi \)

By induction, \(b \in B \). According to lemma A.18 on page 84, \(A = B \). Hence, by \(= \) 7, \(b \in A \).

Op-II

By induction, \(B \in (x \in A)\text{set} \). Hence, by judge-II-set and judge-cat-2, \(\Pi(A,B) \) cat.

\(\lambda \varphi \)

By induction, \(b \in (x \in A)\text{app}(B,x) \) and \(\Pi(A,B) \) cat. By lemma A.15 on page 82, \(A \in \text{set} \) and \(B \in (x \in A)\text{set} \). Hence, by judge-II-\(\lambda \), \(\lambda(A,B,b) \in \Pi(A,B) \). Thus, by lemma A.11 on page 79 and lemma A.16, \(\lambda(A',B',b) \in \Pi(A,B) \).

id\(\varphi \)

By induction, \(Eq(A,a,a) \) cat and \(a' \in A \). By lemma A.15, \(A \in \text{set} \), \(a \in A \). Hence, by judge-Eq-id, lemma A.11 and lemma A.16, \(id(A',a') \in Eq(A,a,a) \).

\(\square \) (lemma 4.1)

The above result will be used implicitly in the following.

Lemma 4.2 (Finishedness when \(A \) sn) Let \(A \) cat. Suppose \(A \) sn. Then

1. \(\overline{A} \) finished is shown \(\implies \) \(A \) finished is shown
2. \(\overline{A} \) finished \(\prec \) \(U \) finished \(\implies \) \(A \) finished \(\prec \) \(U \) finished

Proof

1. If not, then there is a minimal element, \(D \), in the reduction tree of \(A \) such that \(D \) finished is not shown. Since \(D \neq \overline{A} \), we must have \(D \) eni. But then, by Op-eni, \(D \) open is shown. It follows directly from F-eni that \(D \) finished is also shown.
Similarly, using the fact that \texttt{F-eni} is included in \texttt{ALL-RULES}.

\[
\text{(lemma 4.2)}
\]

\textbf{Lemma 4.3 (Finishedness in set)} Suppose that

- \(A \in \text{set} \)
- \(A \text{ sn} \)
- \(\overline{A} \text{ finished} \prec U \text{ finished} \)

Then

\(A \epsilon \varphi(\text{set}) \prec U \text{ finished} \)

\textbf{PROOF} Suppose that the statement is wrong. Then there is a minimal \(D \) in the reduction tree of \(A \) such that \(D \epsilon \varphi(\text{set}) \prec U \text{ finished} \) is not true. By \textbf{lemma A.19} on page 88 and \textbf{lemma 4.2}

\(D \in \text{set} \text{ and } D \text{ finished} \prec U \text{ finished} \)

By \texttt{set-insert}, \(D \text{ intro} \) is not true, i.e., \(D \text{ elim} \). Furthermore, by the minimality

\(D \rightarrow E \Rightarrow E \epsilon \varphi(\text{set}) \prec U \text{ finished} \)

and hence, by \texttt{general-D} and \texttt{F-U}

\(D \epsilon \varphi(\text{set}) \prec U \text{ finished} \)

Contradiction.

\[
\text{(lemma 4.3)}
\]

\textbf{Lemma 4.4 (Reductions in set)} Suppose that

\(A \epsilon \Phi(\text{set}), A \rightarrow^* B \)

Then

\(B \epsilon \varphi(\text{set}) \preceq A \epsilon \varphi(\text{set}) \)

\textbf{PROOF} It is enough to prove the statement when \(A \rightarrow B \). If \(A \text{ elim} \) then the result follows from \texttt{general-set} \(\varphi \). If \(A \text{ intro} \) then \(B \text{ intro} \) and, since \(A \text{ eni} \)

\(B \text{ finished} \prec A \text{ open} \prec A \text{ finished} \)
Hence, since \textbf{set-insert} \varphi is an R-rule

\[
B \in \varphi(\text{set}) \Rightarrow A \text{ finished}
\]

Also

\[
A \text{ finished} \Rightarrow A \in \varphi(\text{set})
\]

and the result follows.

\[\square\] (lemma 4.4)

Lemma 4.5 (Incorrect judgements) There are no correct judgements of the following forms

- \(\text{set} \in D\)
- \((x \in A)B \in D\)

PROOF By an easy induction on the proof of a correct judgement.

\[\square\] (lemma 4.5)

Definition 4.1 (Stability) Suppose

\[A \text{ finished} \text{ is shown}\]

and

\[a \in \Phi(A) \Rightarrow a \in \varphi(A) \Rightarrow A \text{ finished}\]

i.e. \(\varphi(A)\) is not growing after \(A \text{ finished has been shown}\). Then \(A\) is said to be stable.

\[\square\] (definition 4.1)

Lemma 4.6 (Stabilizing lemma) Suppose that

\[A \text{ finished is shown}\]

Then \(A\) is stable.

PROOF Suppose that the statement is false. Let \(G \text{ finished}\) be minimal with respect to the property \(G\) is not stable. Let \(d \in \varphi(G)\) be minimal with respect to the property
4.1 F-eni, G eni

d ∈ φ(G) \rightarrow G \text{ finished}

We refer to the property of G as "the outer induction" and to the property of d as "the inner induction". Suppose that d ∈ φ(G) has been shown with general-Gφ. Thus, we have shown d ∈ φ(G) with

\[
\begin{align*}
& \quad \text{G open}, \ d \in G, \ d \text{ elim}, \\
& \quad (d \rightarrow b) \implies b \in \varphi(G) \\
& \quad d \in \varphi(G)
\end{align*}
\]

By the inner induction

\[
(d \rightarrow b) \implies (b \in \varphi(G) \leftarrow G \text{ finished})
\]

It follows that the rule is ready at the time when we show G finished. Thus, its conclusion has been shown, which implies that d ∈ φ(G) ⇐ G finished, i.e. a contradiction. Consequently, d ∈ φ(G) is not shown with general-Gφ. In particular, d intro.

We know that G finished has been shown with one of the following rules:

F-eni, F-cat, F-set, F-N, F-II, F-Eq, F-U

In each case, we have to prove that the assumption "d ∈ φ(G)" is shown with an introduction rule for φ" gives a contradiction.

4.1 F-eni, G eni

The introduction rule is insert-eniφ

\[
\begin{align*}
& \quad \text{G open}, \\
& \quad \text{G cat}, \ G \rightarrow B, \ d \in \varphi(B), \ d \text{ intro} \\
& \quad d \in \varphi(G)
\end{align*}
\]

G open has been shown with Op-eni:

\[
\begin{align*}
& \quad \text{G open} \\
& \quad \text{G cat}, \ (G \rightarrow C) \implies C \text{ finished}
\end{align*}
\]

Thus

B finished ⇐ G open ⇐ G finished

By the outer induction B in insert-eniφ above, is stable. It follows that

\[
d \in \varphi(B) \leftarrow B \text{ finished} \leftarrow G \text{ finished}
\]

Hence, the rule is ready when we show G finished. It follows that its conclusion already has been drawn. Therefore,
d ∈ ϕ(G) ≺ G finished

which is a contradiction. Hence, \(G\ \text{finished}\) cannot have been shown by the use of F-eni.

* (F-eni)

4.2 F-cat, \(G \equiv (x \in A)B\)

The only \(ϕ\)-introduction rule is \(\text{abstr}\ \varphi\)

\[
\frac{(x \in A)B \text{ open}, \quad b \in B \ (x \in A), \ a \in ϕ(A) \implies b(x:=a) \in ϕ(B(x:=a))}{(x)b \in ϕ((x \in A)B)}
\]

where \(d \equiv (x)b\).

Now, \(A\ \text{finished} \prec (x \in A)B\ \text{finished}\). Thus, \(A\) is stable according to the outer induction. At the time when we are to show \((x \in A)B\ \text{finished}\), we have

\[
a \in Φ(A) \implies (B(x:=a) \text{ finished} \prec (x \in A)B \text{ finished})
\]

It follows that \(B(x:=a)\) is stable for \(a \in Φ(A)\). Thus, the premisses for \(d \in ϕ(G)\) are satisfied at this time and hence the conclusion has been drawn. We infer that \(G\ \text{finished} \) cannot have been shown with F-cat.

* (F-cat)

4.3 F-set, \(G \equiv \text{set}\)

The only \(ϕ\)-introduction rule is \(\text{set-insert}\ \varphi\)

\[
\frac{\text{set open}, \quad d \in \text{set}, \ d \ \text{finished}, \ d \ \text{intro}}{d \in ϕ(\text{set})}
\]

It follows that

\[
d \in ϕ(\text{set}) \succ d \ \text{finished} \succ \text{set finished}
\]

Take the minimal in the set of

\(e\ \text{finished}\)

such that

\[
e \in \text{set and } e \ \text{finished} \succ \text{set finished}
\]

We refer to the property of \(e\) as "induction on \(e\)". We have several cases depending on which of the following rules \(e\ \text{finished}\) has been shown with:

F-eni, F-N, F-II, F-Eq eller F-U.

The rules F-set and F-cat are not candidates because of lemma 4.5.
4.3 \(F\text{-}set, \ G \equiv set \)

4.3.1 \(F\text{-}eni \)

By induction and lemma A.19 on page 88

\[
\begin{align*}
 e & \rightarrow b \quad b \text{ finished} \quad \prec e \text{ finished} \quad \implies \\
 & \implies b \text{ finished} \quad \prec set \text{ finished}
\end{align*}
\]

Thus, \(e \ open \ \prec set \ finished \), and hence by \(F\text{-}eni \) (and \(F\text{-}set \))

\[
 e \text{ finished} \quad \prec set \text{ finished}
\]

which is a contradiction.

4.3.2 \(F\text{-}N, \ e \equiv N \)

Op\text{-}N has no premisses. It follows that \(N \ open \ \prec set \ finished \) and hence by
\(F\text{-}N \)

\[
 N \text{ finished} \quad \prec set \text{ finished}
\]

Contradiction.

4.3.3 \(F\text{-}II, \ e \equiv \Pi(A,B) \ A,B \text{ normal} \)

In order to get a contradiction, it suffices, by the premisses of \(F\text{-}II \) and \(F\text{-}set \), to prove that

\[
 \Pi(A,B) \ open \ \prec set \text{ finished}
\]

To do this, it is enough to prove that

1. \(A \text{ finished} \ \prec set \text{ finished} \)
2. \(B \in \varphi((x \in A)\text{set}) \ \prec set \text{ finished} \)
3. \((x \in A)\text{app}(B,x) \text{ finished} \ \prec set \text{ finished} \)

We know that

a. \(A \in \text{set} \ , \ A \text{ finished} \ \prec e \text{ finished} \)

b. \(B \in \varphi((x \in A)\text{set}) \ \prec e \text{ finished} \)

c. \((x \in A)\text{app}(B,x) \text{ finished} \ \prec e \text{ finished} \)

The proof of the statements 1-3 follows.

1. From a above and induction on \(e \).
2. By 1

\[(x \in A)\text{set open} \prec \text{set finished}\]

If \(B \, \text{elim} \) then the result follows by \textbf{general}-(\(x \in A\)\text{set} \(\varphi\)) since \(B\) is normal. Otherwise

\[B \in \varphi((x \in A)\text{set})\]

has been shown with

\[
(x \in A)\text{set open}, \quad b \in \text{set} (x \in A), a \in \varphi(A) \implies b(x:=a) \in \varphi(\text{set})
\]

\[(x) b \in \varphi((x \in A)\text{set})\]

where \(B \equiv (\alpha)b\). We know by 1 that \(A \, \text{finished} \prec \text{set finished} \) and hence, by the outer induction, \(A\) is \textit{stable}. Let \(a \in \Phi(A)\). Then

\[b(x:=a) \in \varphi(\text{set}) \prec B \in \varphi((x \in A)\text{set}) \prec \text{finished} \leq \]

\[\preceq d \, \text{finished} \prec d \in \varphi(\text{set})\]

so that by the inner induction

\[b(x:=a) \in \varphi(\text{set}) \preceq \text{set finished}\]

It follows that the rule is \textit{ready} at the time when we are to show \textit{set finished} and hence the conclusion is already drawn i.e. 2 is proved.

3. If \(B\) is not of the form \((\alpha)B'\) then \((x \in A)\text{app}(B,x)\) is normal and, by \textbf{Op-cat} and \textbf{F-cat}, it suffices to prove (remember that \(A\) is \textit{stable})

\[a \in \Phi(A) \implies \text{app}(B,a) \, \text{finished} \prec \text{set finished}\]

Let \(a \in \Phi(A)\). We have

\[\text{app}(B,a) \, \text{finished} \prec (x \in A)\text{app}(B,x) \, \text{finished} \prec \text{e finished}\]

Thus, by induction on \(e\)

\[\text{app}(B,a) \, \text{finished} \prec \text{set finished}\]

Note that, by \textbf{judge-cat-5} and \textbf{lemma 4.1} on page 20, \(\text{app}(B,a) \in \text{set}\). In the other case \(B \equiv (\alpha)B'\). There is only one reduction

\[(x \in A)\text{app}(B,x) \equiv (x \in A)\text{app}((x)B',x) \rightarrow (x \in A)B'\]

It follows from \textbf{Op-eni} and \textbf{F-eni} that it is sufficient to prove that

\[(x \in A)B' \, \text{finished} \prec \text{set finished}\]

Since \(B \in (x \in A)\text{set}\) it follows from \textbf{lemma A.15} on page 82 that
4.3 \textit{F-set, }G \equiv \textit{ set}

\[B' \in \text{set} \ (x \in A) \]

Thus, it suffices to prove that
\[a \in \Phi(A) \implies B'(x:=a) \text{ finished} \prec \text{ set finished} \]

Let \(a \in \Phi(A) \). Then by lemma \textbf{A.6} on page 66 and lemma \textbf{4.1} on page 20, \(B'(x:=a) \in \text{set} \). Furthermore
\[B'(x:=a) \text{ finished} \prec (x \in A)B' \text{ finished} \prec (x \in A)\text{app(B,x)} \text{ finished} \prec e \text{ finished} \]

Thus, by the minimality of \(e \)
\[B'(x:=a) \text{ finished} \prec \text{ set finished} \]

We have obtained a contradiction of the assumption that \(e \text{ finished} \) has been shown with F-II.

4.3.4 \textit{F-Eq, }e \equiv \textit{Eq(A,a,b)}

It suffices to show that \(\text{Eq(A,a,b)} \) open \(\prec \) set finished. By induction on \(e \)
\[A \text{ finished} \prec \text{ set finished} \]

Thus, by the outer induction \(A \) is \textit{stable} and hence
\[a \in \varphi(A) \prec A \text{ finished} \]
\[b \in \varphi(A) \prec A \text{ finished} \]

It follows that
\[a \in \varphi(A) \prec \text{ set finished} \]
\[b \in \varphi(A) \prec \text{ set finished} \]

and hence
\[\text{Eq(A,a,b)} \text{ open} \prec \text{ set finished} \]

We are done.

4.3.5 \textit{F-U, }e \equiv \textit{U}

\textit{F-set} has in its premisses \(U \text{ finished} \), which directly gives a contradiction.

We have now reached a contradiction of the assumption that \(G \text{ finished} \) is shown with \textit{F-set}.

\[\ast \text{ (F-set)} \]
4.4 F-N, G ≡ N
The ϕ-introduction rules are 0ϕ and sϕ.

0ϕ, d ≡ 0 : Apparently, this is impossible.

sϕ, d ≡ s(a) : By the inner induction, a ∈ ϕ(N) ≺ N finished. In the usual way we conclude that s(a) ∈ ϕ(N) ≺ N finished. We have obtained a contradiction of the assumption that G finished is shown with F-N.

* (F-N)

4.5 F-Π, G ≡ Π(A,B)
The only ϕ-introduction rule is λϕ

\[
\begin{align*}
A &= A' \in \text{set} , \\
B &= B' \in (x \in A)\text{set} , \\
A' \ \text{sn} , \\
B' \ \text{sn} , \\
\Pi(A,B) \ \text{open} , \\
b &\in \varphi((x \in A)\text{app}(B,x)) \\
\lambda(A',B',b) &\in \varphi(\Pi(A,B))
\end{align*}
\]

where d ≡ λ(A',B',b).

We have

\[
(x \in A)\text{app}(B,x) \text{ finished} \prec \Pi(A,B) \text{ open} \prec \\
\prec \Pi(A,B) \text{ finished} = G \text{ finished}
\]

By the outer induction \((x \in A)\text{app}(B,x)\) is stable and hence

\[
b \in \varphi((x \in A)\text{app}(B,x)) \prec (x \in A)\text{app}(B,x) \text{ finished} \prec \\
\prec G \text{ finished}
\]

It follows that the rule above for d ∈ ϕ(G) is ready at the time, when we show G finished. It follows that the conclusion has already been drawn, which gives

\[
d \in \varphi(G) \prec G \text{ finished}
\]

We have obtained a contradiction of the assumption that G finished is shown with F-Π.

* (F-Π)

4.6 F-Eq, G ≡ Eq(A,a,b)
In the case when a ≠ b then there is no introduction rule. If a ≡ b then the only ϕ-introduction rule is idϕ

\[
\begin{align*}
A &= A' \in \text{set} , \\
a &= a' \in A , \\
A' \ \text{sn} , \\
a' &\in \varphi(A) , \\
\text{Eq}(A,a,a) \ \text{open} \\
\text{id}(A',a') &\in \varphi(\text{Eq}(A,a,a))
\end{align*}
\]
4.7 $\mathbf{F-U, G \equiv U}$

where $d \equiv \text{id}(A', a')$.

Now,

$\text{A finished } \prec \text{Eq}(A, a, a) \text{ finished}$

and hence by the outer induction, we obtain that A is stable. It follows that

$a' \in \varphi(A) \prec A \text{ finished}$

Thus, the conclusion in the above rule must be shown before $\text{Eq}(A, a, a) \text{ finished}$. We get a contradiction of the assumption that $G \text{ finished}$ has been shown with $\mathbf{F-Eq}$.

\[* \quad (\text{F-Eq}) \]

4.7 $\mathbf{F-U, G \equiv U}$

The only φ-introduction rule is $\mathbf{U-insert}\varphi$

\[
\frac{\mathbf{U \ open ,} \\
\mathbf{d \in U , T(d) \ finished , d \ intro}}{\mathbf{d \in \varphi(U)}}
\]

Obviously, $T(d) \text{ finished } \supset U \text{ finished}$. By lemma 3.2.1 on page 18, $T(d)$ is strongly normalizable, so that according to lemma 4.2 on page 20

$\overline{T(d)} \text{ finished } \supset U \text{ finished}$

Take the minimal in the set of

$\overline{T(e)} \text{ finished}$

such that $e \in U$ and

$\overline{T(e)} \text{ finished } \supset U \text{ finished}$

Note that this choice of e does not imply that \overline{e} exists. Neither is $e \text{ intro}$ necessarily true. To get a contradiction, we have to show that in fact

$\overline{T(e)} \text{ finished } \prec U \text{ finished}$

By $\mathbf{Openi}, \mathbf{Feni}$ and $\mathbf{F-U}$, we have $\overline{T(e)} \text{ intro}$. Hence, during the reduction $T(e) \xrightarrow{*} \overline{T(e)}$ the "T" must have been resolved. This means that the reduction may be written

$T(e) \xrightarrow{*} T(f) \xrightarrow{*} \overline{T(e)}$, where $e \xrightarrow{*} f$

and where f has an introduction form "belonging to" T. Note that, according to lemma A.19 on page 88, $f \in U$. Thus, we may assume that e is on one of the forms

$n, \pi(a, b), eq(a, b, c)$
4.7.1 $e \equiv n$

$\overline{T(n)} \equiv N$ and N finished $\prec U$ finished.

4.7.2 $e \equiv \pi(a, b)$

$\overline{T(e)} \equiv \overline{T(\pi(a, b))} \equiv \Pi(\overline{T(a)}, (x)\overline{T(app(b, x))})$

Note that we have used lemma 2.3.1 on page 12 to obtain e.g. that $\overline{T(a)}$ exists.

Let $B \equiv T(app(b, x))$. Here

$\Pi(\overline{T(a)}, (x)\overline{B})$ open

must have been shown with Op-II. We know that

a. $\overline{T(a)}$ finished $\prec \overline{T(e)}$ finished

b. $(x)\overline{B} \epsilon \varphi((x \in \overline{T(a)})set) \prec \overline{T(e)}$ finished

c. $(x \in \overline{T(a)})app((x)\overline{B}, x)$ finished $\prec \overline{T(e)}$ finished

We have to prove that

1. $\overline{T(a)}$ finished $\prec U$ finished

2. $(x)\overline{B} \epsilon \varphi((x \in \overline{T(a)})set) \prec U$ finished

3. $(x \in \overline{T(a)})app((x)\overline{B}, x)$ finished $\prec U$ finished

1. The result follows from a and the the minimality of $\overline{T(e)}$. Note that $a \in U$

 by lemma A.15 on page 82. In particular, by the outer induction, $\overline{T(a)}$

 is stable.

2. By 1

 $(x \in \overline{T(a)})set$ open $\prec U$ finished

Now

$\overline{B} \in \text{set } (x \in \overline{T(a)})$

Here we have used lemma A.12 on page 80, lemma A.15, lemma A.18 and lemma A.19. Thus, by abstrφ, it is sufficient to prove that

$c \epsilon \Phi(\overline{T(a)}) \implies \overline{B}(x:=c) \epsilon \varphi(\text{set}) \prec U$ finished

Let $c \epsilon \Phi(\overline{T(a)})$. We know that

$\overline{B}(x:=c) \epsilon \varphi(\text{set}) \prec (x)\overline{B} \epsilon \varphi((x \in \overline{T(a)})set) \prec \overline{T(e)}$ finished
and hence in particular, by lemma 3.2.1, that $\overline{B}(x:=c)$ is strongly normalizable. Hence, by lemma 4.3 on page 21, it is sufficient to prove that

$$\overline{B}(x:=c) \text{ finished } \prec \overline{U} \text{ finished}$$

But this is true if $\overline{B}(x:=c)$ eni. Thus we may assume that it is a normal intro. Now

$$T(\text{app}(b,c)) \equiv B(x:=c) \xrightarrow{\ast} \overline{B}(x:=c)$$

so that

$$\overline{B}(x:=c) \equiv T(\text{app}(b,c))$$

But $\text{app}(b,c) \in U$ and hence, by the minimality of $\overline{T}(c)$ finished, it suffices to prove that

$$\overline{B}(x:=c) \text{ finished } \prec \overline{T}(c) \text{ finished}$$

Now, using lemma 4.4 on page 21

$$\overline{B}(x:=c) \text{ finished } \prec \overline{B}(x:=c) \in \varphi(\text{set}) \preceq$$

$$\preceq \overline{B}(x:=c) \in \varphi(\text{set}) \prec \overline{T}(c) \text{ finished}$$

and we are done.

3. Since the only reduction of $(x \in T(a))\text{app}((x)\overline{B},x)$ is

$$(x \in T(a))\text{app}((x)\overline{B},x) \rightarrow (x \in T(a))\overline{B}$$

it suffices to prove that

$$c \in \Phi(T(a)) \Rightarrow \overline{B}(x:=c) \text{ finished } \prec \overline{U} \text{ finished}$$

Let $c \in \Phi(T(a))$. We proved in 2 that $\overline{B}(x:=c)$ is strongly normalizable. Thus, according to lemma 4.2 on page 20, it is sufficient to prove that

$$\overline{B}(x:=c) \text{ finished } \prec \overline{U} \text{ finished}$$

and this was also done in 2.

4.7.3 $e \equiv \text{eq}(a,b,c)$

$$\overline{T}(c) \equiv \text{Eq}(\overline{T}(a),\overline{b},\overline{c})$$

Here $\text{Eq}(\overline{T}(a),\overline{b},\overline{c})$ open must have been shown with Op-Eq. It is sufficient to show that

$$\text{Eq}(\overline{T}(a),\overline{b},\overline{c}) \text{ open } \prec \overline{U} \text{ finished}$$
4 STABILITY OF φ

We know that

\[
\begin{align*}
\overline{\mathcal{T}(a)} \text{ finished} & \prec \overline{\mathcal{T}(c)} \text{ finished} \\
\overline{b} \in \varphi(\overline{\mathcal{T}(a)}) & \prec \overline{\mathcal{T}(c)} \text{ finished} \\
\overline{c} \in \varphi(\overline{\mathcal{T}(a)}) & \prec \overline{\mathcal{T}(c)} \text{ finished}
\end{align*}
\]

By the minimality of $\overline{\mathcal{T}(c)}$

\[
\overline{\mathcal{T}(a)} \text{ finished} \prec \text{ U finished}
\]

Hence, by the outer induction $\overline{\mathcal{T}(a)}$ is stable so that

\[
\begin{align*}
\overline{b} \in \varphi(\overline{\mathcal{T}(a)}) & \prec \overline{\mathcal{T}(a)} \text{ finished} \\
\overline{c} \in \varphi(\overline{\mathcal{T}(a)}) & \prec \overline{\mathcal{T}(a)} \text{ finished}
\end{align*}
\]

whence the result follows.

This gives a total contradiction of the assumption about "e" and hence a total contradiction of the assumption that $G \text{ finished}$ has been shown with F-U.

* (F-U)

We have gone through all the possibilities for G. Thus, we have obtained a contradiction of the assumption that the lemma is not true.

☐ (lemma 4.6)
5 Finishedness and reduction of φ

Lemma 5.1 (finished-lemma) When φ is completed, then

\[A \text{ open} \implies A \text{ finished} \]

i.e. if A open is shown then A finished is shown too.

PROOF Let C open be minimal with respect to the property "C finished is never shown". We have to consider the different Op-rules, which may have shown C open. By the form of the F-rules, it is obvious that C finished is shown unless the Op-rule is Op-cat or Op-set. By Op-U and F-U, U finished will be shown. Thus, by F-set, the Op-rule cannot be Op-set. It remains to consider the case

$\text{Op-cat }, C \equiv (x \in A)B$

We have to show that the corresponding instance of F-cat will be used. This is obviously the case if we eventually get

\[a \in \Phi(A) \implies B(x:=a) \text{ finished} \]

However, since A finished $\prec C$ open, lemma 4.6 on page 22 gives that A is stable. Hence

\[a \in \Phi(A) \implies B(x:=a) \text{ open } \prec C \text{ open} \]

By induction, this means that we eventually will show that $B(x:=a)$ finished for every $a \in \Phi(A)$.

\[\blacksquare (\text{lemma 5.1}) \]

Lemma 5.2 (Reduction lemma) We have the following reduction properties

1. $A \Phi\text{-cat }, A \to B \implies B \Phi\text{-cat}$
2. $d \in \Phi(C), d \to e \implies e \in \Phi(C)$

PROOF

The statement in 1 is obvious since $A \to B$ implies that A eni and hence A open must have been shown with Op-eni.

Now consider 2. Suppose that the statement is false. Then there is a minimal

\[d \in \varphi(C) \]

such that d does not have this property. We separate the proof into different cases, depending on how $d \in \varphi(C)$ has been shown.
general-$A \varphi$, $d \equiv a$, $C \equiv A$

Let $a \rightarrow e$. According to the premises in the rule

$$e \in \varphi(A) \prec a \in \varphi(A)$$

so that in particular

$$e \in \Phi(A)$$

Contradiction.

insert-elimφ, $d \equiv b$, $C \equiv A$

We have

$$b \in \varphi(B) \prec d \in \varphi(C)$$

Let $b \rightarrow e$. Then, by induction $e \in \Phi(B)$. Thus insert-elimφ is ready at the time when we use the φ-completed rule. It follows that

$$e \in \Phi(A)$$

abstrφ, $d \equiv (x)b$, $C \equiv (x \in A)B$

Reduction by

$$(x)b \rightarrow (x)b'$, where b \rightarrow b'$$

By lemma 4.6 on page 22

$$a \in \Phi(A) \Rightarrow b(x:=a) \in \varphi(B(x:=a)) \prec d \in \varphi(C)$$

so that, by induction

$$a \in \Phi(A) \Rightarrow b'(x:=a) \in \Phi(B(x:=a))$$

Note that according to lemma A.19 on page 88, $b' \in B (x \in A)$. Thus, abstr-φ will eventually be used to show

$$(x)b' \in \varphi((x \in A)B)$$

set-insertφ, $d \equiv A$, $C \equiv set$

$A \rightarrow A'$. Thus $A \text{ eni}$ and $A \text{ open}$ must have been shown with Op-eni which implies that $A' \text{ finished}$ is shown. Since $A \text{ intro}$, so is A', and it follows that

$$A' \in \varphi(\text{set})$$

is shown.

0φ, $d \equiv 0$, $C \equiv N$

Obvious.
\(s\varphi, d \equiv s(a), C \equiv N \)
Reduction by
\[s(a) \rightarrow s(a'), \text{ where } a \rightarrow a' \]
We have
\[a \in \varphi(N) \prec s(a) \in \varphi(N) \]
By induction \(a' \in \Phi(N) \) and hence, by \(s\varphi \) used on \(a' \), \(s(a') \in \Phi(N) \).
\(\lambda\varphi, d \equiv \lambda(A',B',b), C \equiv \Pi(A,B) \)
The reductions are
1. \(\lambda(A',B',b) \rightarrow \lambda(A'',B',b), \text{ where } A' \rightarrow A'' \)
2. \(\lambda(A',B',b) \rightarrow \lambda(A',B'',b), \text{ where } B' \rightarrow B'' \)
3. \(\lambda(A',B',b') \rightarrow \lambda(A',B',b'), \text{ where } b \rightarrow b' \)
We prove below that the reductions, in the separate cases, lie in \(\Phi(\Pi(A,B)) \)
1. By lemma A.18 on page 84, \(A = A'' \in \text{set}. \) Furthermore, since \(A' \text{ sn, so is } A''. \) It follows that we eventually will show
\[\lambda(A'',B',b) \in \varphi(\Pi(A,B)) \]
with \(\lambda\varphi \).
2. Analogous to 1.
3. By induction
\[b' \in \Phi((x \in A)\text{app}(B,x)) \]
and hence
\[\lambda(A',B',b') \in \varphi(\Pi(A,B)) \]
will be shown.
We have reached a contradiction in the case \(\lambda\varphi \).
\(\text{id}\varphi, d \equiv \text{id}(A',a'), C \equiv \text{Eq}(A,a,a) \)
The reductions are
1. \(\text{id}(A',a') \rightarrow \text{id}(A'',a'), \text{ where } A' \rightarrow A'' \)
2. \(\text{id}(A',a') \rightarrow \text{id}(A',a''), \text{ where } a' \rightarrow a'' \)
Since, \(A = A'' \in \text{set} \) and \(A'' \text{ sn, case } 1 \) follows directly. In the case of 2, we have \(a = a'' \in A. \) Furthermore
\[a' \in \varphi(A) \prec d \in \varphi(C) \]
so that by induction, \(a'' \in \Phi(A) \). Thus, we will eventually show
id(A', a'') ∈ \varphi(Eq(A, a, a))

with id_{\varphi}.

U-insert_{\varphi}, d \equiv a, C \equiv U

We have a reduction a → a'. Now

T(a') finished ≺ T(a) finished, a' intro

and hence we will eventually show a' ∈ \varphi(U) with U-insert_{\varphi}.

\hfill \blacksquare \ (\text{lemma 5.2})
6 Properties of Φ

6.1 Auxiliary results concerning Φ

Lemma 6.1.1 (Invariance under reduction) Suppose

A Φ-cat and $A \xrightarrow{\ast} B$

Then

B Φ-cat and $\Phi(A) = \Phi(B)$

Proof By lemma 3.2.1 on page 18, A is strongly normalizable. Furthermore, by lemma 5.2 on page 33, D Φ-cat for every D in the reduction tree of A. Thus, it suffices to prove that every element, D, in the reduction tree of A satisfies

$\Phi(D) = \Phi(\overline{A})$

Suppose not. Then there is a minimal element, D, in the reduction tree not satisfying this property. By minimality

$D \rightarrow E \implies \Phi(E) = \Phi(\overline{A})$

If the statement is false then there is either an element in $\Phi(D)$ not in $\Phi(\overline{A})$ or vice versa. In the first case there is a minimal

$a \in \varphi(D)$

such that

$a \not\in \Phi(\overline{A})$

By the premisses in insert-eni, $a \in \varphi(D)$ cannot have been shown with this rule. Thus it is shown with general-Dφ. By minimality

$a \rightarrow b \implies b \in \Phi(\overline{A})$

and hence, using general-$\overline{A}\varphi$, we conclude that $a \in \Phi(\overline{A})$, which is a contradiction of the first case.

In the second case there is a minimal

$a \in \varphi(\overline{A})$

such that

$a \not\in \Phi(D)$

If a intro then, by insert-eni used on a reduction $D \rightarrow E$, $a \in \varphi(D)$ must be shown. Hence, a elim and $a \in \varphi(\overline{A})$ must have been shown with general-$\overline{A}\varphi$. By minimality
a \rightarrow b \implies b \in \Phi(D)

and hence, using \textbf{general-Dϕ}, we conclude that \(a \in \Phi(D)\), which is a contradiction of the second case.

\(\square\) (lemma 6.1.1)

\textbf{Lemma 6.1.2 (Invariance under equality)} Suppose that

- \(A \text{ cat}, \ B \text{ cat}\)
- \(A = B\)

Then

\(\Phi(A) = \Phi(B)\)

\textbf{PROOF} By \textbf{lemma A.20} on page 89, \(A \text{ conv } B\). Hence, by \textbf{lemma 2.3.1} on page 12, \(\overline{A} \equiv \overline{B}\) so that by \textbf{lemma 6.1.1}

\(\Phi(A) = \Phi(\overline{A}) = \Phi(B)\)

\(\square\) (lemma 6.1.2)

\textbf{Lemma 6.1.3 (Reductions and \(\Phi\)-cat)} Let \(A \text{ cat and let}\)

\[A \overset{*}{\rightarrow} B \]

Then the following statements are equivalent

1. \(A \text{ sn, } B \text{ cat}\)
2. \(A \text{ cat}\)

\textbf{PROOF}

1. \(\implies\) 2 By \textbf{lemma 6.1.1} on page 37, \(\overline{B} \equiv \overline{A}\) is \(\Phi\)-cat and hence, by \textbf{lemma 5.1} on page 33 and \textbf{lemma 4.2} on page 20 \(A \text{ cat}\).

2. \(\implies\) 1 This follows from \textbf{lemma 3.2.1} on page 18 and \textbf{lemma 6.1.1} on page 37.

\(\square\) (lemma 6.1.3)

\textbf{Lemma 6.1.4 (\(\Phi\)-cat and \(\Phi\)(set))} Let \(A \in \text{ set}\). \text{Then}
6.1 Auxiliary results concerning Φ

\[A \Phi\text{-cat} \iff A \in \Phi(\text{set}) \]

PROOF

⇒

Suppose that A open is minimal with respect to the property

\[A \notin \Phi(\text{set}) \]

By lemma 5.1 on page 33 A finished is shown. By set-insertφ, A intro cannot be true. Thus, A elim and A open has been shown with Op-eni. Suppose $A \rightarrow B$. Then

\[B \text{ open} \prec B \text{ finished} \prec A \text{ open} \]

Thus, by induction

\[B \in \Phi(\text{set}) \]

Now, general-setφ gives a contradiction.

⇐

Suppose $A \in \varphi(\text{set})$ is minimal with respect to the property that A open is not shown.

Suppose that A intro. Then insert-enφ cannot have been used to show $A \in \varphi(\text{set})$, since set is normal. Hence, set-insertφ must have been used to show it. Thus A finished is shown. Contradiction. Suppose now that A elim and $A \rightarrow B$. Then

\[B \in \varphi(\text{set}) \prec A \in \varphi(\text{set}) \]

By induction, B Φ-cat so that by lemma 5.1 on page 33 B finished is shown. Hence, eventually, Op-eni may be applied to show A open. Contradiction.

İ (lemma 6.1.4)

Lemma 6.1.5 (Membership to cat) $a \in \Phi(A) \Rightarrow A \Phi$-cat

PROOF If $a \in \varphi(A)$ has been shown then A open has been shown, since it is a part of the premisses of all relevant rules.

İ (lemma 6.1.5)
6.2 Φ-rules

For every rule in R (defined in section 3) we obtain a Φ-rule by taking away the assumptions of normality and making the following replacements

- $\varphi \rightarrow \Phi$
- $\text{open} \rightarrow \Phi\text{-cat}$
- $\text{finished} \rightarrow \Phi\text{-cat}$

The corresponding rule is renamed by replacing Op by OP and φ by Φ. In particular, this gives us the following Φ-rules:

general-Φ

- $A \Phi\text{-cat}$
- $a \in A$, $a \text{ elim}_b (a \rightarrow b) \Rightarrow b \in \Phi(A)$
- $a \in \Phi(A)$

OP-cat

- $A \Phi\text{-cat}$, $B \text{ cat } (x \in A)$, $a \in \Phi(A) \Rightarrow B(x:=a) \Phi\text{-cat}$
- $(x \in A)B \Phi\text{-cat}$

abstrΦ

- $(x \in A)B \Phi\text{-cat}$
- $b \in B(x \in A)$, $a \in \Phi(A) \Rightarrow b(x:=a) \in \Phi(B(x:=a))$
- $(x)b \in \Phi((x \in A)B)$

OP-N

- $N \Phi\text{-cat}$

0Φ

- $N \Phi\text{-cat}$
- $0 \in \Phi(N)$

sΦ

- $N \Phi\text{-cat}$
- $a \in \Phi(N)$
- $s(a) \in \Phi(N)$
6.2 Φ-rules

OP-II

\[
\frac{A \in \text{set}, A \Phi\text{-cat}, B \in \Phi((x \in A)\text{set}), (x \in A)\text{app}(B,x) \Phi\text{-cat}}{\Pi(A,B) \Phi\text{-cat}}
\]

\[
\lambda \Phi
\]

\[
\frac{A = A' \in \text{set}, B = B' \in (x \in A)\text{set},
A'\text{ sn}, B'\text{ sn},
\Pi(A,B) \Phi\text{-cat},
\ b \in \Phi((x \in A)\text{app}(B,x))}{\lambda(A',B',b) \in \Phi(\Pi(A,B))}
\]

OP-Eq

\[
\frac{A \in \text{set}, A \Phi\text{-cat}, a \in \Phi(A), b \in \Phi(A)}{\text{Eq}(A,a,b) \Phi\text{-cat}}
\]

\[
id \Phi
\]

\[
\frac{A = A' \in \text{set}, a = a' \in A,
A'\text{ sn}, a' \in \Phi(A),
\text{Eq}(A,a,a) \Phi\text{-cat}}{\text{id}(A',a') \in \Phi(\text{Eq}(A,a,a))}
\]

OP-U

\[
\frac{}{U \Phi\text{-cat}}
\]

U-insert Φ

\[
\frac{U \Phi\text{-cat},
a \in U, T(a) \Phi\text{-cat}, a \text{ intro}}{a \in \Phi(U)}
\]

Lemma 6.2.1 (Correctness of Φ-rules) All the Φ-rules above are valid, i.e., if the premises above the line in a Φ-rule are satisfied then the conclusion below the line is also satisfied.

Proof We demonstrate the proof method in some examples.
OP-cat

Suppose that the premisses in this Φ-rule are satisfied. By lemma 3.2.1 on page 18, A and $B(x:=a)$ are strongly normalizable for all $a \in \Phi(A)$. By choosing a as a constant, we see that B and hence also $(x \in A)B$ are strongly normalizable. Thus, by lemma 6.1.3 on page 38, it suffices to prove that

$$(x \in A)B \ \Phi\text{-cat}$$

By lemma 6.1.1 on page 37

$$a \in \Phi(A) \implies a \in \Phi(A) \implies B(x:=a) \ \Phi\text{-cat} \implies$$

$$\implies \overline{B(x:=a)} \ \Phi\text{-cat}$$

By lemma 5.1 on page 33, lemma A.12 on page 80, lemma A.18 and lemma A.19, the following is true at the time for proving φ-completed

\overline{A} finished, \overline{B} cat $(x \in A)$, $a \in \varphi(A) \implies \overline{B(x:=a)}$ open

i.e. the premisses in **Op-cat**, needed to draw the conclusion $(x \in A)B$ open, are satisfied. Thus, the conclusion is already shown. It follows that

$$(x \in A)B \ \Phi\text{-cat}$$

abstrΦ

Suppose that the premisses in this Φ-rule are satisfied. By lemma 3.2.1 on page 18, A and B are strongly normalizable. Hence by lemma 6.1.1 on page 37, it suffices to prove that

$$(x)b \in \Phi((x \in A)B)$$

By the time when φ-completed is shown we have

$$a \in \varphi(A) \implies a \in \Phi(A) \implies a \in \Phi(A) \implies$$

$$\implies b(x:=a) \in \Phi(B(x:=a)) \implies b(x:=a) \in \Phi(\overline{B(x:=a)}) \implies$$

$$\implies b(x:=a) \in \varphi(\overline{B(x:=a)})$$

Furthermore, as above $b \in \overline{B}$ $(x \in A)$. Hence the premisses in **abstrφ** are ready so the conclusion

$$(x)b \in \varphi((x \in A)B)$$

has already been drawn.

OP-II

Suppose that the premisses in this Φ-rule are satisfied. By lemma 3.2.1 on page 18, A and B are strongly normalizable. By lemma 5.2 on page 33, lemma 6.1.1 on page 37 and lemma A.19 on page 88
6.3 Induction methods

Thus, when φ-completed is shown we have

$\overline{A} \in \text{set}$, $\overline{A} \Phi$-cat, $\overline{B} \in \Phi((x \in \overline{A})\text{set})$, $(x \in \overline{A})\text{app}(\overline{B}, x)$ finished

so the conclusion $\Pi(\overline{A}, \overline{B})$ open has already been shown, i.e. $\Pi(\overline{A}, \overline{B})$ Φ-cat. It follows from lemma 6.1.3 on page 38 that $\Pi(A, B)$ Φ-cat.

By lemma 3.2.1 on page 18, A and B are strongly normalizable. By lemma 5.2 on page 33 and lemma 6.1.1 on page 37

$\Pi(\overline{A}, \overline{B})$ Φ-cat, $b \in \Phi((x \in \overline{A})\text{app}(\overline{B}, x))$

Thus, when φ-completed is shown we have

$\overline{A} = \overline{A}' \in \text{set}$, $\overline{B} = \overline{B}' \in (x \in \overline{A})\text{set}$
$\overline{A}' \text{ sn}$, $\overline{B}' \text{ sn}$
$\Pi(\overline{A}, \overline{B})$ open
$b \in \varphi((x \in \overline{A})\text{app}(\overline{B}, x))$

so the conclusion

$\lambda(\overline{A}', \overline{B}', b) \in \varphi(\Pi(\overline{A}, \overline{B}))$

has already been shown, i.e.

$\lambda(\overline{A}', \overline{B}', b) \in \Phi(\Pi(\overline{A}, \overline{B}))$

By lemma 6.1.1 on page 37

$\lambda(\overline{A}', \overline{B}', b) \in \Phi(\Pi(A, B))$

\blacksquare (lemma 6.2.1)

6.3 Induction methods

For $A \text{ cat}$ correct, let $\text{Term}(A)$ denote the set of expressions a such that $a \in A$ is correct.

Definition 6.3.1 Let $D \text{ cat}$, where $D \equiv (x \in A)B$ or D has one of the forms

N, Π, Eq, U
Consider the subsets I of $\text{Term}(D)$. We will say that I is closed under rules of type

\[
\begin{array}{c}
\text{condition} \\
\hline \\
\text{expression} \in I
\end{array}
\]

if "expression" is in I, whenever "condition" is satisfied. For every D as above, we will associate a number of such rules called generating-rules for D. For every D

gereral-DI:

\[
\frac{a \in D, a \text{ elim} , (a \rightarrow b) \implies b \in I}{a \in I}
\]

is one of the generating-rules. Furthermore, for each form we associate additional generating-rules, called introduction rules, as follows:

- **cat** - for subsets I of $\text{Term}((x \in A)B)$, $(x \in A)B \text{ cat}$, A,B normal

abstrI:

\[
\frac{b \in B \ (x \in A), a \in \Phi(A) \implies b(x:=a) \in \Phi(B(x:=a))}{(x)b \in I}
\]

- **N** - for subsets I of $\text{Term}(N)$

0I:

\[
\frac{}{0 \in I}
\]

sI:

\[
\frac{a \in I}{s(a) \in I}
\]

- **Π** - for subsets I of $\text{Term}(\Pi(A,B))$, $\Pi(A,B) \text{ cat}$, A,B normal

λI:

\[
\begin{array}{l}
A = A' \in \text{ set} , B = B' \in (x \in A)\text{ set} , \\
A' \text{ sn} , B' \text{ sn} , \\
b \in \Phi(\{x \in A\}\text{ app}(B,x))
\end{array}
\]

\[
\lambda(A',B',b) \in I
\]

- **Eq** - for subsets I of $\text{Term}(\text{Eq}(A,a,b))$, $\text{Eq}(A,a,b) \text{ cat}$, A,a,b normal
6.3 Induction methods

idI: - in the case when \(a \equiv b \)

\[
\begin{align*}
A &= A' \in \text{set} \ , \ a = a' \in A \\
A' &\text{sn} \ , \ a' \in \Phi(A) \\
\text{id}(A', a') &\in I
\end{align*}
\]

- U - for subsets \(I \) of \(\text{Term}(U) \)

U-insertI:

\[
\begin{align*}
a &\in U \ , \ a \text{ intro} \ , \ T(a) \in \Phi - \text{cat} \\
a &\in I
\end{align*}
\]

\(\square \) (definition 6.3.1)

Lemma 6.3.1 (Induction lemma) Let \(D \) cat and suppose that \(D \) open is shown with one of the open-rules named cat, N, II, Eq, U. Then \(\Phi(D) \) is the least subset \(I \) of \(\text{Term}(D) \), which is closed under the generating-rules for \(D \).

PROOF We consider different cases depending on the form of \(D \). By lemma 4.1 on page 20, \(\Phi(D) \) is a subset of \(\text{Term}(D) \). That, in each case, \(\Phi(D) \) respects the rules follows directly from lemma 6.2.1 on page 41. Suppose \(J \subseteq \text{Term}(D) \) is closed under the generating-rules for \(D \). We want to show that \(\Phi(D) \subseteq J \).

Let \(d \in \Phi(D) \). We show that \(d \in J \) by induction on the time when \(d \in \varphi(D) \) is proved. If \(d \in \varphi(D) \) has been shown with general-D\(\varphi \), then

\[
(d \rightarrow b) \quad \Rightarrow \quad b \in \varphi(D)
\]

But then, by induction, \(b \in J \) and hence by general-DI \(d \in J \). Thus, in the following we do not have to repeat this argument in each separate case.

\(D \equiv (x \in A)B \)

Here \(d \in \varphi((x \in A)B) \) has been shown with abstr\(\varphi \). Hence, \(d \equiv (x)b \) and when we apply the rule the following is true

- \(b \in B(x \in A) \text{ and } a \in \varphi(A) \Rightarrow b(x:=a) \in \varphi((x \in A)B) \)
- A finished

By lemma 4.6 on page 22, it follows that

\[
a \in \Phi(A) \quad \Rightarrow \quad b(x:=a) \in \Phi((x \in A)B)
\]

We conclude that \((x)b \in J\).

\(D \equiv N \)
1. $d \in \varphi(N)$ is shown with 0φ. But $0 \in J$.

2. $d \in \varphi(N)$ is shown with $s\varphi$. Thus, $a \in \varphi(N) \setminus s(a) \in \varphi(N)$. By induction, $a \in J$. It follows that $s(a) \in J$.

$\mathbf{D} \equiv \Pi(A,B)$

Here $d \equiv \lambda(A',B',b) \in \varphi(\Pi(A,B))$ is shown with $\lambda\varphi$. Hence

$b \in \Phi((x \in A)\text{app}(B,x))$

so that $\lambda(A',B',b) \in J$.

$\mathbf{D} \equiv \text{Eq}(A,a,b)$

In case $a \neq b$, there is no introduction rule. Otherwise

$d \equiv \text{id}(A',a') \in \varphi(\text{Eq}(A,a,a))$

is shown with $\text{id}\varphi$. Therefore $\text{id}(A',a') \in J$.

$\mathbf{D} \equiv \text{U}$

Here $d \in \varphi(U)$ is shown with $\text{U-insert}\varphi$ and hence $T(d)$ finished. It follows that $T(d) \Phi$-cat and we conclude that $d \in J$.

\blacksquare (lemma 6.3.1)

Lemma 6.3.2 (Elim criterion in Φ) Let $A \Phi$-cat and let

$F \equiv E(b_1, \ldots, a, \ldots, b_n) \in A$

be an elimination form with a in the main branch. Furthermore, suppose that b_1, \ldots, b_n all are strongly normalizable and that either

a. The main branch a is itself an elimination form and

$$(a \rightarrow a') \Rightarrow E(b_1, \ldots, a', \ldots, b_n) \in \Phi(A)$$

or

b. The main branch $a \equiv \text{intr}(c_1, \ldots, c_m)$, where intr is an introduction form "belonging to" E, and where c_1, \ldots, c_m are all strongly normalizable and the resolution of the main redux in F is in $\Phi(A)$.

Then $F \in \Phi(A)$.

PROOF
a. Suppose that F is not in $\Phi(A)$. Consider the reduction tree of F. We have to show that every one-step reduction is in $\Phi(A)$. According to the assumptions, such a reduction is in $\Phi(A)$ if the reduction is performed in "a". Thus, there must be a reduction in F, in one of the side branches, which is not in $\Phi(A)$. Consider the reduced reduction tree of F, which is generated by only reducing in the side branches. By assumption, this tree is finite. It follows that there is a minimal element in it, which is not in $\Phi(A)$. Suppose that we have reached this element by:

$$E(b_1, \ldots, a, \ldots, b_n) \xrightarrow{*} E(b_1', \ldots, a, \ldots, b_n')$$

Because of the minimality of $E(b_1', \ldots, a, \ldots, b_n')$, all its reductions in the side branches are in $\Phi(A)$. Now, consider the main branch reduction

$$E(b_1', \ldots, a, \ldots, b_n') \xrightarrow{\ast} E(b_1', \ldots, a', \ldots, b_n')$$

We have

$$E(b_1, \ldots, a, \ldots, b_n) \rightarrow E(b_1, \ldots, a', \ldots, b_n) \xrightarrow{\ast} E(b_1', \ldots, a', \ldots, b_n')$$

and hence, by lemma 5.2 on page 33

$$E(b_1', \ldots, a', \ldots, b_n') \in \Phi(A)$$

which shows that all one-step reductions of $E(b_1', \ldots, a, \ldots, b_n')$ are in $\Phi(A)$. We have reached a contradiction.

b. Suppose that F is not in $\Phi(A)$. Consider the reduction tree of F. We have to show that every one-step reduction is in $\Phi(A)$. According to the assumptions, such a reduction is in $\Phi(A)$ if the reduction is the reduction of F's main redex. Thus, there must be a reduction in F, which is not the reduction of the main redex, and which is not in $\Phi(A)$. Consider the reduced reduction tree of F, which is generated by only reducing redexes which are not the main redex. By assumption, this tree is finite. It follows that there is a minimal element in it, which is not in $\Phi(A)$. Suppose that we have reached this element by:

$$E(b_1, \ldots, \text{intr}(c_1, \ldots, c_m), \ldots, b_n) \xrightarrow{*} E(b_1', \ldots, \text{intr}(c_1', \ldots, c_m'), \ldots, b_n')$$

Because of the minimality of $E(b_1', \ldots, \text{intr}(c_1', \ldots, c_m'), \ldots, b_n')$ all its reductions, avoiding the main redex, are in $\Phi(A)$. Let G be the result of the (schematic) resolution of the main redex of $E(x_1, \ldots, \text{intr}(y_1, \ldots, y_m), \ldots, x_n)$

Now, consider the main redex reduction

$$E(b_1', \ldots, \text{intr}(c_1', \ldots, c_m'), \ldots, b_n') \rightarrow G(x_1 := b_1', \ldots, y_1 := c_1', \ldots, y_m := c_m', \ldots, x_n := b_n')$$

We have
\[E(b_1, \ldots, \text{intr}(c_1, \ldots, c_m), \ldots, b_n) \rightarrow \]
\[\rightarrow G(x_1 := b_1, \ldots, y_1 := c_1, \ldots, y_m := c_m, \ldots, x_n := b_n) \rightarrow^* \]
\[\rightarrow G(x_1 := b'_1, \ldots, y_1 := c'_1, \ldots, y_m := c'_m, \ldots, x_n := b'_n) \]

and hence by lemma 5.2 on page 33

\[G(x_1 := b'_1, \ldots, y_1 := c'_1, \ldots, y_m := c'_m, \ldots, x_n := b'_n) \in \Phi(A) \]

which proves that all one-step reductions of \(E(b'_1, \ldots, \text{intr}(c'_1, \ldots, c'_m), \ldots, b'_n) \)

are in \(\Phi(A) \). We have reached a contradiction.

\[\blacksquare \text{(lemma 6.3.2)} \]
7 The main theorem

Theorem 7.1 If we have a correct judgement of one of the following forms

- $A \text{ cat}$
- $A = B$
- $a \in A$
- $a = b \in A$

then, for each case, the occurring expressions are strongly normalizable.

7.1 Preliminaries

By lemma A.11 on page 79, it suffices to prove that if a cat or $a \in A$ then a is strongly normalizable. In order to prove this, we need to introduce the concept of ultra-correct judgements.

Definition 7.1.1 (ultra-correct) A judgement

$$JUDGE \; (x_1 \in A_1, \ldots, x_n \in A_n)$$

is said to be ultra-correct if it is correct and satisfies the following "extra requirements", inductively defined by induction on the length n of the assumption list,

$n = 0$

Then we have a judgement without assumptions. The extra requirement indicated by "\sim" is given for the respective different cases of the form of the judgement in the following way:

- $A \text{ cat} \sim A \Phi\text{-cat.}$
- $a \in A \sim a \in \Phi(A)$.
- $A = B \sim A \text{ cat}$ is ultra-correct, $B \text{ cat}$ is ultra-correct.
- $a = b \in A \sim a \in A$ is ultra-correct, $b \in A$ is ultra-correct.

$n > 0$

The extra requirements for the judgement

$$JUDGE \; (x_1 \in A_1, \ldots, x_n \in A_n)$$

is that

- A_1 is ultra-correct
THE MAIN THEOREM

- If \(a_1 \in \Phi(A_1) \), then
 \[JUDGE(x_1 := a_1, x_2 \in A_2(x_1 := a_1), \ldots, x_n \in A_n(x_1 := a_1)) \]
is ultra-correct.

(definition 7.1.1)

Proof of the theorem Assume that \(a \in A \ (x_1 \in A_1, \ldots, x_n \in A_n) \) is a correct judgement. By lemma 7.1 below, the judgement is ultra-correct. By repeated use of the inductive definition of ultra-correctness, we may choose constants \(a_1, \ldots, a_n \) such that the following is true:

\[
A_1 \text{ cat and } \Phi\text{-cat, } a_1 \in \Phi(A_1) \\
A_2(x_1 := a_1) \text{ cat and } \Phi\text{-cat, } a_2 \in \Phi(A_2(x_1 := a_1)) \\
\vdots \\
A_n(x_1 := a_1, \ldots, x_{n-1} := a_{n-1}) \text{ cat and } \Phi\text{-cat, } a_n \in \Phi(A_n(x_1 := a_1, \ldots, x_{n-1} := a_{n-1})) \\
\]

\(a(x_1 := a_1, \ldots, x_n := a_n) \in \Phi(A((x_1 := a_1, \ldots, x_n := a_n)) \)

By lemma 3.2.1 on page 18, \(a(x_1 := a_1, \ldots, x_n := a_n) \) is strongly normalizable and hence \(a \) is strongly normalizable. The proof that \(a \) is strongly normalizable if the form of the judgement is a cat is analogous.

(lemma 7.1)

It remains to prove the lemma referred to in the proof.

Lemma 7.1 (Ultra-correctness lemma) Every correct judgement is ultra-correct.

Proof See the next section.

(lemma 7.1)

7.2 Proof of the ultra-correctness lemma

We first make the following

Definition 7.2.1 A rule is said to preserve ultra-correctness if

- the premises are ultra-correct \(\implies \)
- the conclusion is ultra-correct.

(definition 7.2.1)
7.2 Proof of the ultra-correctness lemma

To prove Lemma 7.1, it will suffice to prove that every rule preserves ultra-correctness. We prove this by induction on the length of the hidden assumption list in an instance of a rule. The inductive step is easily established, by using the inductive definition of ultra-correctness. Note that this can be done for each rule individually. Thus, we only need to prove the base case, i.e., when there is no hidden assumption list. Before we start, we first explain the inner induction principle, which is to be used on the elimination rules. We then proceed to prove the base case for each individual rule.

7.2.1 Principles for the inner induction

Let D cat have one of the forms

$$(x \in A)B, \ N, \ II(A,B), \ Eq(A,a,b), \ U$$

with the respective elimination forms

$\text{app}, \ N\text{-elim}, \ II\text{-elim}, \ Eq\text{-elim}, \ T$

For such a D with elimination form $E(b_1, \ldots, a_1, \ldots, b_n)$, where a is the main branch and where we will know that b_1, \ldots, b_n all are "in Φ", and hence by Lemma 3.2.1 strongly normalizable, we let

$I = \{a \in \Phi(D) | E(b_1, \ldots, a_1, \ldots, b_n) \in \Phi(\mathcal{F})\}$

where \mathcal{F} is the appropriate category. For example, if $D \equiv N$:

$I = \{a \in \Phi(N) | N\text{-elim}(C,a,b,d) \in \Phi(\text{app}(C,a))\}$

In the inner inductions, we want to show that $\Phi(D) \subseteq I$. By Lemma 6.3.1 on page 45 it is enough to show that I is closed under the generating rules. We notice that, for each I-rule, the corresponding Φ-rule ensures that we at least stay in Φ. To show that we stay in I, it is, according to a, in Lemma 6.3.2 on page 46, sufficient to show that I is closed under the introduction rules. If in these cases

$a \equiv \text{intr}(c_1, \ldots, c_m)$

and c_1, \ldots, c_m are strongly normalizable, then, by b, in Lemma 6.3.2 on page 46, it is enough to show that the resolution of the main redex of

$E(b_1, \ldots, \text{intr}(c_1, \ldots, c_m), \ldots, b_n)$

is in $\Phi(\mathcal{F})$. This principle will be referred to as the inner induction principle. Thus, it says:

In order to show that I is closed under the introduction rules, it suffices to show, under the assumptions of the rule, that c_1, \ldots, c_m are strongly normalizable and that if we reduce the main redex immediately (before any other reduction), then we end up in $\Phi(\mathcal{F})$.
7.2.2 Strong equality

All rules except $=7$ and $=8$ trivially preserve ultra-correctness.

- $=7$
 The fact that this rule preserves ultra-correctness follows from lemma 6.1.2 on page 38.

- $=8$
 By the same reason as for $=7$.

7.2.3 General rules

- judge-assumption:
 This case is obvious.

- judge-assumption-addition
 This rule preserves ultra-correctness, since by lemma A.1 on page 62, JUDGE does not contain the variable x.

7.2.4 judge-cat

- judge-cat-1
 Obvious.

- judge-cat-2
 This case follows from lemma 6.1.4 on page 38.

- judge-cat-2’
 This case follows from the fact that judge-cat-2 preserves ultra-correctness.

- judge-cat-3
 By lemma 6.2.1 on page 41 applied to OP-cat.

- judge-cat-3’
 By assumption, B cat $(x \in A)$ is ultra-correct. Hence, using that judge-cat-3 preserves ultra-correctness, we get $(x \in A)B$ cat is ultra-correct.

 Also, by assumption

 A cat, $A’$ cat, $B’$ cat $(x \in A)$
 are ultra-correct. By lemma 6.1.2 on page 38, $\Phi(A) = \Phi(A’)$ so that

 $a \in \Phi(A’) \implies a \in \Phi(A) \implies B’(x:=a) \Phi$-cat

 By lemma A.12 on page 80, $B’$ cat $(x \in A’)$. Thus, $B’$ cat $(x \in A’)$ is ultra-correct, so that as above $(x \in A’)B’$ cat is ultra-correct.
7.2 Proof of the ultra-correctness lemma

• judge-cat-4

By lemma A.11 on page 79, \(B \text{ cat } (x \in A) \). Since \(b \in B (x \in A) \) is ultra-correct, it follows that \(A \Phi\text{-cat} \) and by lemma 6.1.5 on page 39

\[e \in \Phi(A) \implies B(x:=e) \Phi\text{-cat} \]

Hence, by OP-cat, \((x \in A)B \Phi\text{-cat} \). Now, we may use abstr-\(\Phi \) to conclude that

\[(x)b \in \Phi((x \in A)B) \]

It follows that \((x)b \in (x \in A)B \) is ultra-correct.

• judge-cat-4’

This follows since judge-cat-4 preserves ultra-correctness.

• judge-cat-5 (elimination rule)

We have

• \(a \in \Phi(A) \)
• \(b \in \Phi((x \in A)B) \)
• \(e \in \Phi(A) \implies B(x:=e) \Phi\text{-cat} \)

We want to prove

\[\text{app}(b,a) \in \Phi(B(x:=a)) \]

Since judge-cat-3 preserves ultra-correctness, we have \((x \in A)B \Phi\text{-cat} \). Hence, by lemma 6.1.1 on page 37

\[\Phi((x \in A)B) = \Phi((x \in \overline{A})B) \]

IND(cat): In this case

\[I = \{ e \in \Phi((x \in \overline{A})B) \mid \text{app}(e,a) \in \Phi(B(x:=a)) \} \]

The only introduction rule is

abstrI:

\[\frac{c \in \overline{B} (x \in \overline{A}), d \in \Phi(A) \implies c(x:=d) \in \Phi(B(x:=d))}{(x)c \in I} \]

By the inner induction principle, it suffices to show that \(c \) is strongly normalizable and that

\[c(x:=a) \in \Phi(B(x:=a)) \]
By lemma 3.2.1 on page 18 and the usual argument with \(d\) as a constant, \(c\) is strongly normalizable. By assumption, \(B(x:=a)\Phi\text{-cat}\). Hence, by lemma 6.1.1 on page 37
\[
\Phi(B(x:=a)) = \Phi(B(x:=a))
\]
Now the premisses in abstrI and the fact that \(\Phi(A) = \Phi(\overline{A})\) give the result.

- **judge-cat-5'**
 Since **judge-cat-5** preserves ultra-correctness, we get that
 \[
 \text{app}(b,a) \in B(x:=a) \quad \text{and} \quad \text{app}(b',a') \in B(x:=a')
 \]
 are ultra-correct. Thus it is enough to prove that
 \[
 \Phi(B(x:=a)) = \Phi(B(x:=a'))
 \]
 which is a consequence of the premisses, lemma 6.1.2 on page 38 and lemma A.13 on page 80.

- **judge-cat-6-calc**
 Since **judge-cat-4** preserves ultra-correctness
 \[
 (x)b \in (x \in A)B \text{ is ultra-correct}
 \]
 By lemma A.11 on page 79, \(B \text{ cat } (x \in A)\). Since \(b \in B (x \in A)\) is ultra-correct, it follows as in **judge-cat-4** that \(B \text{ cat } (x \in A)\) is ultra-correct. Hence, since **judge-cat-5** preserves ultra-correctness, we get
 \[
 \text{app}((x)b,a) \in B(x:=a) \text{ is ultra-correct}
 \]
 Using \(a \in \Phi(A)\) and that \(b \in B (x \in A)\) is ultra-correct, we get
 \[
 b(x:=a) \in B(x:=a) \text{ is ultra-correct}
 \]

7.2.5 judge-N

- **judge-N-set**
 We have \(N \Phi \text{-cat}\) and hence, by lemma 6.1.4 on page 38, \(N \in \Phi \text{(set)}\).

- **judge-N-0**
 We want to prove that
 \[
 0 \in \Phi(N)
 \]
 This follows from \(0\Phi\), since \(N \Phi \text{-cat}\).

- **judge-N-s**
 This case follows as above from \(s\Phi\).
7.2 Proof of the ultra-correctness lemma

- **judge-N-elim**
 Suppose that the premises in the rule are ultra-correct. We have to prove that
 \[
 \text{N-elim}(C,a,b,d) \in \Phi(\text{app}(C,a))
 \]

 IND(N): In this case
 \[
 I = \{ e \in \Phi(N) | \text{N-elim}(C,e,b,d) \in \Phi(\text{app}(C,e)) \}
 \]
 The introduction rules are
 \[
 0 \in I
 \]
 \[
 sI:
 \]
 \[
 \frac{c \in I}{s(c) \in I}
 \]

 the 0I case: By the inner induction principle, it suffices to show that
 \[
 b \in \Phi(\text{app}(C,0))
 \]
 which is true since \(b \in \text{app}(C,0) \) is ultra-correct.

 the sI case: Now, \(c \) is in \(I \), and hence it is strongly normalizable. Thus, by the inner induction principle, it suffices to show that
 \[
 \text{app}(\text{app}(d,c),\text{N-elim}(C,c,b,d)) \in \Phi(\text{app}(C,s(c)))
 \]
 Since \(c \in I \)
 \[
 \text{N-elim}(C,c,b,d) \in \Phi(\text{app}(C,c))
 \]
 Now, \(c \in \Phi(N) \) so that, by lemma 4.1 on page 20, \(c \in N \). Thus
 - \(c \in N \)
 - \(\text{N-elim}(C,c,b,d) \in \text{app}(C,c) \)
 are ultra-correct. There is a derivation of
 1. \(\text{app}(\text{app}(d,c),e) \in \text{app}(C,s(c)) \)
 using only previous rules, the premises and
 2. \(c \in N \)
 3. \(e \in \text{app}(C,c) \)
 Thus, if 2 and 3 are ultra-correct then so is 1. Thus, putting \(e = \text{N-elim}(C,c,b,d) \), we are done.
7 THE MAIN THEOREM

- judge-N-0-calc
 This follows from the fact that judge-N-elim and judge-N-0 preserve ultra-correctness.

- judge-N-s-calc
 We can prove that the judgements
 - \(N\text{-elim}(C, s(a), b, d) \in \text{app}(C, s(a)) \)
 - \(\text{app}(\text{app}(d, a), N\text{-elim}(C, a, b, d)) \in \text{app}(C, s(a)) \)
 are correct from the premisses using only the previous rules. Thus, they are also ultra-correct.

7.2.6 judge-II

- judge-II-set
 Suppose that the the premisses are ultra-correct. To prove that the conclusion is ultra-correct, it is, by lemma 6.1.4 on page 38, sufficient to prove that \(\Pi(A, B) \Phi\text{-cat} \). To prove this we use OP-II. By lemma 6.1.4, it is enough to prove that \((x \in A)\text{app}(B, x) \Phi\text{-cat} \). We use \(\text{OP-cat} \) to prove this. A simple derivation gives
 \[
 \text{app}(B, x) \Phi\text{-cat} \quad (x \in A)
 \]
 Let \(a \in \Phi(A) \). Then, by lemma 4.1 on page 20, \(a \in A \) is ultra-correct.
 By assumption, \(B \in (x \in A)\text{set} \) is ultra-correct. Also, \(\text{set} \Phi\text{-cat} \) is ultra-correct. Thus, since judge-cat-5 preserves ultra-correctness
 \[
 \text{app}(B, a) \in \Phi(\text{set})
 \]
 Hence, by lemma 6.1.4
 \[
 a \in \Phi(A) \implies \text{app}(B, a) \Phi\text{-cat}
 \]
 Thus, the premisses of \(\text{OP-cat} \) are satisfied and we are done.

- judge-II-λ
 By \(\lambda \Phi \), lemma 3.2.1 on page 18, lemma 6.1.4 and the just established fact that judge-II-set preserves ultra-correctness.

- judge-II-elim
 Suppose that the premisses in the rule are ultra-correct. By lemma 6.1.4 and the fact that judge-II-set preserves ultra-correctness, we have \(\Pi(A, B) \Phi\text{-cat} \). Hence, by lemma 6.1.1 on page 37
 \[
 \Phi(\Pi(A, B)) = \Phi(\Pi(A, B))
 \]
 IND(II) In this case
7.2 Proof of the ultra-correctness lemma

\[I = \{ e \in \Phi(\Pi(A, B)) \mid \text{II-elim}(A, B, C, e, d) \in \Phi(\text{app}(C, e)) \} \]

The only introduction rule is:

\[\lambda I: \]

\[\frac{A = A' \in \text{set}, B = B' \in (x \in A)\text{set}, A' \text{ sn}, B' \text{ sn}}{c \in \Phi((x \in A)\text{app}(B, x))} \]

\[\lambda(A', B', c) \in I \]

By the inner induction principle, it suffices to prove that

\[\text{app}(d, c) \in \Phi(\text{app}(C, \lambda(A', B', c))) \]

Now

\[(x \in A)\text{app}(B, x) \text{ cat} \]

has a derivation from the premisses using only previous rules. Thus it is also ultra-correct. By lemma 6.1.1 on page 37

\[c \in \Phi((x \in A)\text{app}(B, x)) \]

On the other hand, by lemma 4.1 on page 20

\[c \in (x \in A)\text{app}(B, x) \]

is correct and hence ultra-correct. We can prove

\[\text{app}(d, c) \in \text{app}(C, \lambda(A, B, c)) \]

using only \(c \in (x \in A)\text{app}(B, x) \), previous rules and the premisses. Thus it is also ultra-correct. By \(\lambda \Phi \)

\[\lambda(A', B', c) \in \Pi(A, B) \]

is ultra-correct. Furthermore, since judge-II-\(\lambda \) preserves ultra-correctness

\[\lambda(A, B, c) \in \Pi(A, B) \]

is ultra-correct. There is a derivation of

1. \(\text{app}(C, e) \text{ cat} \)

using only previous rules, the premisses and

2. \(e \in \Pi(A, B) \)

Thus, if 2 is ultra-correct then so is 1. Hence

- \(\text{app}(C, \lambda(A, B, c)) \) \(\Phi \)-cat
• \text{app}(C, \lambda(A', B', c)) \ \Phi\text{-cat}

On the other hand, by \textbf{lemma A.16} on page 84

\text{app}(C, \lambda(A, B, c)) = \text{app}(C, \lambda(A', B', c))

Now, by \textbf{lemma 6.1.2} on page 38

\Phi(\text{app}(C, \lambda(A, B, c))) = \Phi(\text{app}(C, \lambda(A', B', c)))

and we are done.

• \textbf{judge-II-\lambda-calc}

We can prove that the judgements

• II\text{-elim}(A, B, C, \lambda(A, B, b), d) \in \text{app}(C, \lambda(A, B, b))
• \text{app}(d, b) \in \text{app}(C, \lambda(A, B, b))

are correct from the premises using only the previous rules. Thus they are also ultra-correct.

7.2.7 \textbf{judge-Eq}

• \textbf{judge-Eq-set}

A direct consequence of \textbf{OP-Eq} and \textbf{lemma 6.1.4}.

• \textbf{judge-Eq-id}

Since \textbf{judge-Eq} preserves ultra-correctness, the result follows from \text{id}\Phi and \textbf{lemma 6.1.4}.

• \textbf{judge-Eq-elim}

Suppose that the the premises are ultra-correct. By \textbf{lemma 6.1.4} and the fact that \textbf{judge-Eq-set} preserves ultra-correctness, we have \text{Eq}(A, a, b) \Phi\text{-cat}. Hence, by \textbf{lemma 6.1.1} on page 37

\Phi(\text{Eq}(A, a, b)) = \Phi(\text{Eq}(\bar{A}, \bar{a}, \bar{b}))

\textbf{IND(Eq)} In this case

\[I = \{ g \in \Phi(\text{Eq}(\bar{A}, \bar{a}, \bar{b})) \mid \text{Eq-elim}(A, a, b, C, g, d) \in \Phi(\text{app}(\text{app}(C, a), b, g)) \} \]

If \(\bar{a} \neq \bar{b} \) then there is no introduction rule, which immediately takes care of this case. Otherwise, the only introduction rule is

\textbf{idI:}

\[\begin{array}{c}
\text{\(\bar{A} = A' \in \text{set} \), } \bar{a} = c \in \bar{A} , \\
\text{\(A' \text{ sn} \), } c \in \Phi(\bar{A}) \end{array} \]

\[\text{id}(A', c) \in I \]
By the **inner induction principle**, it suffices to prove that
\[\text{app}(d,c) \in \Phi(\text{app}(\text{app}(C,a),a),\text{id}(A',c))) \]
Using **lemma 6.1.1** and the premises we get in the usual way that
\[c \in A \]
is ultra-correct. We can prove
\[\text{app}(d,c) \in \text{app}(\text{app}(C,c),c),\text{id}(A,c)) \]
using only \(c \in A \), previous rules and the premises. Thus it is also ultra-correct. Now
\[\text{Eq}(A,a,a) \text{ cat} \]
is derivable from the premises and previous rules and hence it is ultra-correct. Thus, by **id**
\[\text{id}(A',c) \in \text{Eq}(A,a,a) \]
is ultra-correct. Furthermore, since **judge-Eq-id** preserves ultra-correctness
\[\text{id}(A,c) \in \text{Eq}(A,c,c) \]
is ultra-correct. There is a derivation of
1. \(\text{app}(\text{app}(C,f),f),g) \text{ cat} \)
using only previous rules, the premises and
2. \(f \in A \)
3. \(g \in \text{Eq}(A,f,f) \)
Thus, if 2 and 3 are ultra-correct then so is 1. Hence
* \(\text{app}(\text{app}(C,c),c),\text{id}(A,c)) \Phi \text{- cat} \)
* \(\text{app}(\text{app}(C,a),a),\text{id}(A',c)) \Phi \text{- cat} \)
On the other hand, by **lemma A.16** on page 84
\[\text{app}(\text{app}(C,c),c),\text{id}(A,c)) = \text{app}(\text{app}(C,a),a),\text{id}(A',c)) \]
So that, by **lemma 6.1.2** on page 38
\[\Phi(\text{app}(\text{app}(C,c),c),\text{id}(A,c))) = \Phi(\text{app}(\text{app}(C,a),a),\text{id}(A',c))) \]
and we are done.

* **judge-Eq-id-calc**
 By the same argument as in **judge-II-\(\lambda \)-calc**.
7.2.8 judge-U

- judge-U-set
 Obvious.

- judge-U-T

 \[IND(U) \text{ in this case} \]
 \[I = \{ a \in \Phi(U) \mid T(a) \in \Phi(\text{set}) \} \]

 The only introduction rule is

 \[\text{U-insertI:} \quad \frac{a \in U, \text{ a intro, } T(a) \in \Phi-\text{cat}}{a \in I} \]

 That \(I \) is closed under this rule follows directly from lemma 6.1.4.

- judge-U-n

 We have \(n \in U \) and \(n \text{ intro} \). By \text{U-insert} \(\Phi \) and lemma 6.1.4, it suffices to prove that

 \[T(n) \in \Phi(\text{set}) \]

 However, the only resolution of \(T(n) \) is

 \[T(n) \rightarrow N \]

 and \(N \in \Phi(\text{set}) \). By \text{general-set} \(\Phi \), we are done.

- judge-U-n-calc

 We can prove that the judgements

 - \(T(n) \in \text{set} \)
 - \(N \in \text{set} \)

 are correct using only the previous rules. Thus they are also ultra-correct.

- judge-U-\(\pi \)

 By \text{U-insert} \(\Phi \) and lemma 6.1.4, it suffices to prove that

 \[T(\pi(a,b)) \in \Phi(\text{set}) \]

 The resolution of the main redex in \(T(\pi(a,b)) \) is

 \[T(\pi(a,b)) \rightarrow \Pi(T(a),(x)T(app(b,x))) \]

 By lemma 6.3.2 on page 46, it suffices to prove that
7.2 Proof of the ultra-correctness lemma

\[\Pi(T(a),(x)T(app(b,x))) \in \Phi(set) \]

However

\[\Pi(T(a),(x)T(app(b,x))) \in \text{set} \]

has a derivation using the premises and only previous rules. Thus it is ultra-correct and we are done.

- **judge-U-\pi-cal**
 By the usual argument.

- **judge-U-eq**
 By U-insert\(\Phi\) and lemma 6.1.4, it suffices to prove

 \[T(eq(a,b,c)) \in \Phi(set) \]

 The resolution of the main redex in \(T(eq(a,b,c))\) is

 \[T(eq(a,b,c)) \rightarrow Eq(T(a),b,c) \]

 By lemma 6.3.2, it is sufficient to prove that

 \[Eq(T(a),b,c) \in \Phi(set) \]

 However

 \[Eq(T(a),b,c) \in \text{set} \]

 has a derivation using the premises and only previous rules. Thus it is ultra-correct and we are done.

- **judge-U-eq-cal**
 By the usual argument.

\[\blacksquare \text{(lemma 7.1)} \]
A Appendix - Convertibility and equality

In this section, we will derive some properties of the formal system defined by the rules given in section 2. We will use the following vector notations

\[u \in F \equiv u_1 \in F_1, \ldots, u_p \in F_p \quad p \geq 0 \]

\[z \in E \equiv z_1 \in E_1, \ldots, z_m \in E_m \quad m \geq 1 \]

\[y \in D \equiv y_1 \in D_1, \ldots, y_r \in D_r \quad r \geq 0 \]

\[e \in E \equiv e_1 \in E_1, e_2 \in E_2(z_1:=e_1), \ldots, e_m \in E_m(z_1:=e_1) \ldots (z_{m-1}:=e_{m-1}) \]

\[e' \in E \equiv e_1' \in E_1, e_2' \in E_2(z_1:=e_1'), \ldots, e_m' \in E_m(z_1:=e_1') \ldots (z_{m-1}:=e_{m-1}') \]

\[e=e' \in E \equiv e_1=e_1' \in E_1, e_2=e_2' \in E_2(z_1:=e_1), \ldots, e_m=e_m' \in E_m(z_1:=e_1) \ldots (z_{m-1}:=e_{m-1}) \]

The names \(u_i, z_j \ldots \) denote different variables.

Definition A.1 (Correct assumption lists)

\((x_1 \in A_1, \ldots, x_n \in A_n)\)

is said to be a correct assumption list if

\[A_1 \text{ cat} \]

\[A_2 \text{ cat } (x_1 \in A_1) \]

\[\ldots \]

\[A_n \text{ cat } (x_1 \in A_1, \ldots, x_{n-1} \in A_{n-1}) \]

Note that there are no hidden assumptions in these judgements.

\[\square \text{(definition A.1)} \]

Lemma A.1 (Assumptions in judgements) Suppose that

\(JUDGE \ (x_1 \in A_1, \ldots, x_n \in A_n) \)

with no hidden assumptions. Then

\((x_1 \in A_1, \ldots, x_n \in A_n) \)

is a correct assumption list and, if \(x \) occurs in \(JUDGE \), then \(x \) is one of the \(x_i \)'s.

PROOF The following property is established by a straightforward induction. If
JUDGE \((x_1 \in A_1, \ldots, x_n \in A_n) \)

then

\[
\begin{align*}
A_1 \text{ cat} \\
A_2 \text{ cat } (x_1 \in A_1) \\
\ldots \\
A_n \text{ cat } (x_1 \in A_1, \ldots, x_{n-1} \in A_{n-1})
\end{align*}
\]

and, if \(x \) occurs in JUDGE, then \(x \) is one of the \(x_i \)'s and, if \(x \) occurs in \(A_j \), then \(x \) is \(x_i \) for some \(i, \, 1 \leq i < j \).

\[\blacksquare\] (lemma A.1)

Lemma A.2 (Inserted assumption) \textit{Suppose that}

- \(E \text{ cat} \)
- \(JUDGE \ (y \in D) \)

\textit{then}

\[
JUDGE \ (z \in E, \ y \in D)
\]

\textbf{PROOF} By induction on the proof of JUDGE \((y \in D)\). If the assumption list \(y \in D \) is empty then the result follows from judge-assumption-addition. Otherwise, for each rule, the result follows directly from the induction hypothesis.

\[\blacksquare\] (lemma A.2)

The following two lemmas are not needed in the rest of the paper, but have some interest of their own.

Lemma A.3 (Moving of an assumption) \textit{If}

\[
JUDGE \ (u \in F, \ z \in E, \ w \in G, \ y \in D)
\]

\textit{and}

\[G \text{ cat}\]

\textit{then}

\[
JUDGE \ (u \in F, \ w \in G, \ z \in E, \ y \in D)
\]

\textbf{PROOF} By induction on the proof of the judgement. If the rule does not expand the assumption list or if \(y \in D \) is non-empty then the result follows directly by induction. Thus we only have to consider judge-assumption and judge-assumption-addition when \(D \) is empty.
judge-assumption
We have
\[
\frac{A \text{ cat } (u \in F, z \in E)}{x \in A \ (u \in F, z \in E, x \in A)}
\]
where \(A \) cat. We have to prove
\[
x \in A \ (u \in F, x \in A, z \in E)
\]
By lemma A.1 and repeated use of judge-assumption-addition
\[
A \text{ cat } (u \in F)
\]
and hence by judge-assumption, we get
\[
x \in A \ (u \in F, x \in A)
\]
Furthermore, by lemma A.1
\[
E \text{ cat } (u \in F)
\]
and hence, by judge-assumption-addition
\[
E \text{ cat } (u \in F, x \in A)
\]
Thus, using judge-assumption-addition again, we obtain the result.

judge-assumption-addition
We have
\[
\frac{A \text{ cat } (u \in F, z \in E) , \ JUDGE \ (u \in F, z \in E)}{\ JUDGE \ (u \in F, z \in E, x \in A)}
\]
where \(A \) cat. We have to prove
\[
\text{JUDGE } (u \in F, x \in A, z \in E)
\]
As above
\[
A \text{ cat } (u \in F)
\]
The result now follows from lemma A.2.

\(
\) (lemma A.3)

Lemma A.4 (Permutation of assumptions) If
\[
\text{JUDGE } (x_1 \in A_1, \ldots, x_n \in A_n)
\]
and \((y_1 \in B_1, \ldots, y_n \in B_n)\) is a permutation of \((x_1 \in A_1, \ldots, x_n \in A_n)\) such that \((y_1 \in B_1, \ldots, y_n \in B_n)\) still is a correct assumption list then
\[
\text{JUDGE } (y_1 \in B_1, \ldots, y_n \in B_n)
\]

PROOF Since
\[
B_1 \text{ cat }
\]
we may repeatedly use **lemma A.3** to move \(B_1\) in the "A-list" to the first position. In this new judgement
\[
B_2 \text{ cat } (y_1 \in B_1)
\]
and hence we may move it to the second position. By repeating this procedure, we get the result.
\[
\square \text{ (lemma A.4)}
\]

Lemma A.5 (Weak equals for equals in assumptions) *Suppose that*

- \(\text{JUDGE } (x_1 \in A_1, \ldots, x_n \in A_n, y \in D)\)
- \(A_1 \text{ cat } A_1' \text{ cat } A_1 = A_1'\)
- \(A_2 \text{ cat } (x_1 \in A_1), A_2' \text{ cat } (x_1 \in A_1'), A_2 = A_2' \text{ (}x_1 \in A_1)\)

\[
\ldots
\]

- \(A_n \text{ cat } (x_1 \in A_1, \ldots, x_{n-1} \in A_{n-1})\)
- \(A_n' \text{ cat } (x_1 \in A_1', \ldots, x_{n-1} \in A_{n-1}')\)
- \(A_n = A_n' \text{ (}x_1 \in A_1, \ldots, x_{n-1} \in A_{n-1})\)

Then JUDGE \((x_1 \in A_1', \ldots, x_n \in A_n', y \in D)\)

PROOF By induction on \(n\).

\(n = 1\)

We want to prove that

- \(\text{JUDGE } (z \in E, y \in D)\)
- \(E \text{ cat } E' \text{ cat } E = E'\)

implies

- \(\text{JUDGE } (z \in E', y \in D)\)
We prove this by induction on the derivation of JUDGE \((z \in E, y \in D)\). We only need to check judge-assumption and judge-assumption-addition, since they are the only rules that extend the assumption list.

judge-assumption

When \(z\) is not \(z\) then the result follows directly from the induction hypothesis. Now, suppose that \(x\) is \(z\). We have

\[
\frac{E \mathsf{cat}}{x \in E (x \in E)}
\]

Since \(E' \mathsf{cat}\), we also get \(z \in E' (z \in E')\) and hence, by \(=\exists\), \(z \in E (z \in E')\).

judge-assumption-addition

Similarly, but easier.

induction step

Suppose \(n > 1\) and the statement is true for \(n-1\). We will now prove the statement for \(n\). We have

\[
\begin{aligned}
&JUDGE\ (x_1 \in A_1', \ldots, x_{n-1} \in A_{n-1}', x_n \in A_n, y \in D) \\
&A_n \mathsf{cat}\ (x_1 \in A_1', \ldots, x_{n-1} \in A_{n-1}') \\
&A_{n'} \mathsf{cat}\ (x_1 \in A_1', \ldots, x_{n-1} \in A_{n-1}') \\
&A_n=\mathsf{A}_{n'}\mathsf{cat}\ (z_1 \in A_1', \ldots, x_{n-1} \in A_{n-1}')
\end{aligned}
\]

Hence, by the case \(n = 1\)

\[
JUDGE\ (x_1 \in A_1', \ldots, x_{n-1} \in A_{n-1}', x_n \in A_n', y \in D)
\]

\(\Box\) (lemma A.5)

Lemma A.6 (Substitution of expressions for variables in judgement)

Suppose that

- \(e \in E (u \in F)\)
- \(JUDGE\ (x \in E, y \in D)\)

Then

- \(JUDGE(x:=e)\ (u \in F, y \in D(x:=e))\)

As usual there may be a hidden assumption list to the left of the visible assumption list.
PROOF By induction on \(m \), it is sufficient to prove that

- \(e \in E \) (\(u \in F \))
- \(\text{JUDGE} \ (z \in E, y \in D) \)

implies

- \(\text{JUDGE}(z:=e) \) (\(u \in F, y \in D(z:=e) \))

This, in turn, is proved by induction on the derivation of \(\text{JUDGE} \ (z \in E, y \in D) \). A rule not changing the assumption list and not involving substitutions, is trivially verified. Thus we only have to check

\[
\text{judge-assumption} , \text{ judge-assumption-addition} , \text{ judge-cat-3} , \text{ judge-cat-3'} , \text{ judge-cat-4} , \text{ judge-cat-4'} , \text{ judge-cat-5} , \text{ judge-cat-5'} \text{ and judge-cat-6-calc}
\]

judge-assumption
We must consider two cases, \(x \) is \(z \) and \(x \) is not \(z \).

- **\(x \) is not \(z \)**

\[
\frac{A \text{ cat } (z \in E, y \in D)}{x \in A (z \in E, y \in D, x \in A)}
\]

By induction, we get \(A(z:=e) \) cat (\(u \in F, y \in D(z:=e) \)). We apply judge-assumption to get the result.

- **\(x \) is \(z \)**

\[
\frac{E \text{ cat}}{z \in E (z \in E)}
\]

By assumption \(e \in E \) (\(u \in F \)), which is exactly what we need here.

judge-assumption-addition
Here we also have to consider the cases, \(x \) is \(z \) and \(x \) is not \(z \).

- **\(x \) is not \(z \)**

\[
\frac{A \text{ cat } (z \in E, y \in D), \text{ JUDGE} (z \in E, y \in D)}{\text{JUDGE} (z \in E, y \in D, x \in A)}
\]

By induction, we get

- \(A(z:=e) \) cat (\(u \in F, y \in D(z:=e) \))
- and
- \(\text{JUDGE}(z:=e) \) (\(u \in F, y \in D(z:=e) \))

We apply judge-assumption-addition to get the result.
x is z

\[
\frac{E \text{ cat}, \text{JUDGE}}{\text{JUDGE} (z \in E)}
\]

However, by lemma A.1 on page 62 z is not in JUDGE and hence JUDGE is not changed when we replace z by e. Moreover, since \(e \in E (u \in F) \), lemma A.1 gives

\[
\begin{align*}
F_1 & \text{ cat} \\
F_2 & \text{ cat} (u_1 \in F_1) \\
\vdots \\
F_m & \text{ cat} (u_1 \in F_1, \ldots, u_{m-1} \in F_{m-1})
\end{align*}
\]

Thus, by successive use of judge-assumption-addition, we get JUDGE \((u \in F)\).

judge-cat-3

\[
\frac{B \text{ cat} (z \in E, y \in D, x \in A)}{(x \in A)B \text{ cat} (z \in E, y \in D)}
\]

By induction, \(B(z:=e) \text{ cat} (u \in F, y \in D(z:=e), z \in A(z:=e)) \) is correct. Hence, by **judge-cat-3**, the result follows.

judge-cat-3' , judge-cat-4 , judge-cat-4'

These rules are handled in the same way as **judge-cat-3**.

judge-cat-5

\[
\frac{B \text{ cat} (z \in E, y \in D, x \in A), \quad a \in A (z \in E, y \in D), \quad b \in (x \in A)B (z \in E, y \in D)}{\text{app}(b,a) \in B(x:=a) (z \in E, y \in D)}
\]

By induction

- \(a(z:=e) \in A(z:=e) (u \in F, y \in D(z:=e)) \)

- \(b(z:=e) \in (x \in A(z:=e))B(z:=e) (u \in F, y \in D(z:=e)) \)

Here \(z \) is chosen such that \(e \) does not contain \(z \). Hence, by the same rule

\[
\text{app}(b(z:=e),a(z:=e)) \in (B(z:=e))(x:=a(z:=e)) (u \in F, y \in D(z:=e))
\]

Since \(e \) does not contain \(z \), we have

\[
(B(z:=e))(x:=a(z:=e)) \equiv (B(x:=a))(z:=e)
\]

and the result follows.
judge-cat-5’
This rule is handled in the same way as judge-cat-5.

judge-cat-6-calc

\[
\frac{a \in A \ (z \in E, \ y \in D), \ b \in B \ (z \in E, \ y \in D, \ x \in A)}{\text{app}((x)b,a) = b(x:=a) \in B(x:=a) \ (z \in E, \ y \in D)}
\]

As above, the result follows from the commutativity of substitutions. However, in this case the fact that \(e \) does not contain \(z \) is a consequence of lemma A.1.

\((\text{lemma A.6}) \)

Definition A.2 (Weak congruence rule) A judgement of one the following forms

1. \(B\text{ cat} \ (z \in E, \ y \in D) \)
2. \(b \in B \ (z \in E, \ y \in D) \)

is said to be weakly congruent if

- \(e \in E \ (u \in F) \)
- \(e' \in E \ (u \in F) \)
- \(e = e' \in E \ (u \in F) \)

implies the following two properties

I.

\[
D_k(z:=e) = D_k(z:=e') \ (u \in F, \ y_1 \in D_1(z:=e), \ldots, y_{k-1} \in D_{k-1}(z:=e))
\]

\(1 \leq k \leq r \)

II.

1. \(B(z:=e) = B(z:=e') \ (u \in F, \ y \in D(z:=e)) \)
2. \(b(z:=e) = b(z:=e') \in B(z:=e) \ (u \in F, \ y \in D(z:=e)) \)

in the respective cases.

A judgement of one of the other two (equality) forms are said to be weakly congruent without any extra requirements. A rule is said to preserve weak congruence if for any instance of the rule, the weak congruence of the premisses implies the weak congruence of the conclusion.
Lemma A.7 (Weak congruence for basic rules) Every rule, except possibly one of

judge-N-s, judge-N-elim, judge-II-set, judge-II-λ, judge-IIelim, judge-Eq-set, judge-Eq-id, judge-Eq-elim, judge-U-T,
judge-U-π, judge-U-eq

preserves weak congruence.

PROOF

Equality rules
By definition.

Rules without premisses
Obvious, since they have no (hidden) assumptions.

\[
\frac{a \in A \ (z : E, y : D), \ A = B \ (z : E, y : D)}{a \in B \ (z : E, y : D)}
\]

The condition on D follows from the left premiss and from the same premiss we also get

\[
a(z := e) = a(z := e') \in A(z := e) \ (u : F, y : D(z := e))
\]

By lemma A.6 on page 66

\[
A(z := e) = B(z := e) \ (u : F, y : D(z := e))
\]

Hence, \(=7 \) gives the result.

judge-cat-2
This rule is taken care of in the same way as \(=7 \), by using judge-cat-2'.

judge-assumption
We must consider two cases, \(z \) is substituted and \(z \) is not substituted.

\[x \text{ is not substituted} \]

\[
\frac{A \ \text{cat} \ (z : E, y : D)}{x \in A \ (z : E, y : D, x \in A)}
\]

I follows directly. II follows from lemma A.6, judge-assumption and \(=1 \).
x is substituted

\[
\frac{A \text{ cat } (z \in E)}{x \in A \ (z \in E, \ x \in A)}
\]

I is vacuously satisfied. To verify II assume that

- \(e \in E \ (u \in F)\)
- \(e' \in E \ (u \in F)\)
- \(e = e' \in E \ (u \in F)\)
- \(a \in A(z := e) \ (u \in F)\)
- \(a' \in A(z := e') \ (u \in F)\)
- \(a = a' \in A(z := e) \ (u \in F)\)

But

\(a = a' \in A(z := e) \ (u \in F)\)

is exactly what we have to prove, since, according to lemma A.1, \(A\) does not contain \(x\).

judge-assumption-addition

We only treat the case when \(JUDGE \equiv B \text{ cat}\). The other cases are either similar or trivial.

x is not substituted

\[
\frac{A \text{ cat } (z \in E, y \in D), B \text{ cat } (z \in E, y \in D)}{B \text{ cat } (z \in E, y \in D, x \in A)}
\]

I. Follows directly.

II. Follows, using lemma A.6, II of the right hand premiss and judge-assumption-addition.

x is substituted

\[
\frac{A \text{ cat } (z \in E), B \text{ cat } (z \in E)}{B \text{ cat } (z \in E, x \in A)}
\]

I. Vacuously satisfied

II. Follows from II for the right premiss, since \(B\) does not contain \(x\).

judge-cat-3

\[
\frac{B \text{ cat } (z \in E, y \in D, x \in A)}{(x \in A)B \text{ cat } (z \in E, y \in D)}
\]
I. Follows directly.

II. By I for the premiss

\[A(z : e) = A(z : e') \ (u \in F, \ y \in D(z : e)) \]

and by II

\[B(z : e) = B(z : e') \ (u \in F, \ y \in D(z : e), \ x \in A(z : e)) \]

Hence, by judge-cat-3' the result follows.

judge-cat-4

The same argument as for judge-cat-3.

judge-cat-5

\[
\begin{align*}
B \text{ cat } (z \in E, \ y \in D, \ x \in A), \\
a \in A (z \in E, \ y \in D), \ b \in (x \in A)B (z \in E, \ y \in D) \ \\
\text{app}(b, a) \in B(x : a) (z \in E, \ y \in D)
\end{align*}
\]

I. Follows directly.

II. By II for the premisses

\[a(z : e) = a(z : e') \in A(z : e) \ (u \in F, \ y \in D(z : e)) \]

\[b(z : e) = b(z : e') \in (x \in A(z : e))B(z : e) \ (u \in F, \ y \in D(z : e)) \]

Here \(x \) is chosen such that \(e \) does not contain \(x \). By judge-cat-5'

\[\text{app}(b(z : e), a(z : e)) = \text{app}(b(z : e'), a(z : e')) \in B(z : e)(x : a(z : e)) \]

\[(u \in F, \ y \in D(z : e)) \]

But, since \(e \) does not contain \(x \)

\[B(z : e)(x : a(z : e)) \equiv B(x : a)(z : e) \]

and the result follows.

\[\square \] (lemma A.7)

Lemma A.8 (Rules to judgements) Consider the rules listed in lemma A.7. They are all of the following form

\[
\frac{a_1 \in A_1, \ldots, a_n \in A_n}{f(a_1, \ldots, a_n) \in A_{n+1}}
\]

where \(a_1, \ldots, a_n \) are meta-variables and \(A_1, \ldots, A_{n+1} \) are expressions in the meta-variables. By abuse of names for formal variables, the following judgements are derivable using only rules which are listed in section 2 strictly before the rule at hand:
\[A_1 \text{ cat} \\
A_2 \text{ cat } (a_1 \in A_1) \\
\ldots \\
A_{n+1} \text{ cat } (a_1 \in A_1, \ldots, a_n \in A_n) \\
\]

Furthermore, the following judgement is correct
\[f(a_1, \ldots, a_n) \in A_{n+1} \text{ (} a_1 \in A_1, \ldots, a_n \in A_n \text{)} \]

PROOF The first statement is proved by a straightforward construction of derivations using only previous rules. We will give the details for judge-II-\(\lambda\).

\[
\frac{A \in \text{ set } \lor B \in (x \in A)\text{set} \lor B \in (x \in A)\text{app}(B,x)}{\lambda(A,B,b) \in \Pi(A,B)}
\]

By judge-cat-1
- set cat

By judge-assumption-addition, set cat \((A \in \text{ set}) \). By judge-assumption, \(A \in \text{ set } \) \((A \in \text{ set}) \) and by judge-cat-2

\[A \text{ cat } (A \in \text{ set}) \]

Hence, by judge-assumption-addition, set cat \((A \in \text{ set }, x \in A) \). By judge-cat-3
- \((x \in A)\text{set cat } (A \in \text{ set}) \)

By judge-assumption-addition
- \(A \in \text{ set } \) \((A \in \text{ set }, B \in (x \in A)\text{set}) \)
- \(A \text{ cat } (A \in \text{ set }, B \in (x \in A)\text{set}) \)
- \(\text{set cat } (A \in \text{ set }, B \in (x \in A)\text{set}) \)

and by judge-assumption
- \(y \in A \) \((A \in \text{ set }, B \in (x \in A)\text{set}, y \in A) \)
- \(B \in (x \in A)\text{set } (A \in \text{ set }, B \in (x \in A)\text{set}) \)

By judge-assumption-addition
- \(B \in (x \in A)\text{set } (A \in \text{ set }, B \in (x \in A)\text{set}, y \in A) \)
- \(\text{set cat } (A \in \text{ set }, B \in (x \in A)\text{set}, y \in A, x \in A) \)

Hence, by judge-cat-5
- \(\text{app}(B,y) \in \text{ set } (A \in \text{ set }, B \in (x \in A)\text{set}, y \in A) \)

and thus by judge-cat-2 and judge-cat-3
(y ∈ A)app(B,y) cat (A ∈ set, B ∈ (x ∈ A)set)

Hence by judge-assumption-addition

A ∈ set (A ∈ set, B ∈ (x ∈ A)set, b ∈ (y ∈ A)app(B,y))
B ∈ (x ∈ A)set (A ∈ set, B ∈ (x ∈ A)set, b ∈ (y ∈ A)app(B,y))

Finally, by judge-II-set and judge-cat-2

II(A,B) cat (A ∈ set, B ∈ (x ∈ A)set, b ∈ (y ∈ A)app(B,y))

The second statement in the lemma follows from the first in the following way.

First apply judge-assumption to get a₁ ∈ A₁ (a₁ ∈ A₁). Then successively use judge-assumption-addition to get

a₁ ∈ A₁ (a₁ ∈ A₁, ..., aₙ ∈ Aₙ)

Again by judge-assumption a₂ ∈ A₂ (a₁ ∈ A₁, a₂ ∈ A₂) and by judge-assumption-addition

a₂ ∈ A₂ (a₁ ∈ A₁, ..., aₙ ∈ Aₙ)

The same argument gives

aᵢ ∈ Aᵢ (a₁ ∈ A₁, ..., aₙ ∈ Aₙ) for i = 1, ..., n

Hence by “judge-f”

f(a₁, ..., aₙ) ∈ Aₙ₊₁ (a₁ ∈ A₁, ..., aₙ ∈ Aₙ)

□ (lemma A.8)

Lemma A.9 (Weak congruence) All judgements are weakly congruent.

PROOF We will prove that all rules preserve weak congruence, using lemma A.7 on page 70. The statement will then follow from an induction on the length of the derivation of the judgement. Suppose that all rules strictly before (according to the listing in section 2) the “f-rule” preserve weak congruence. We will prove that the same is true for the “f-rule”

\[
\frac{a₁ ∈ A₁, ..., aₙ ∈ Aₙ}{f(a₁, ..., aₙ) ∈ Aₙ₊₁}
\]

We will use the notation

A₁, ..., Aₙ₊₁
for the expressions obtained when we replace the schematic variables \(a_1, \ldots, a_{n+1} \) by \(x_1, \ldots, x_{n+1} \) in \(A_1, \ldots, A_{n+1} \). By Lemma A.8 on page 72, we have

\[
f(x_1, \ldots, x_n) \in A_{n+1} \text{ if } x_1 \in A_1, \ldots, x_n \in A_n
\]

(with no hidden assumptions). Note that

\[
A_i \equiv A_i(x_1:=a_1)\ldots(x_{i-1}:=a_{i-1}) \text{ for } i = 1, \ldots, n+1
\]

We also introduce the notation

\[
A_i' \equiv A_i(x_1:=a_1')\ldots(x_{i-1}:=a_{i-1}') \text{ for } i = 1, \ldots, n+1
\]

The first step in the proof is to prove that the "\(f \)-rule" has a companion "weak equality rule":

Suppose that for \(i = 1, \ldots, n \)

- \(a_i \in A_i \)
- \(a_i' \in A_i' \)
- \(a_i = a_i' \in A_i \)

then

- \(f(a_1, \ldots, a_n) = f(a_1', \ldots, a_n') \in A_{n+1} \)

To prove this, we prove the following by induction on \(k \).

\[
(x_k)\ldots(x_n)f(a_1, \ldots, a_{k-1}, x_k, \ldots, x_n) = \\
= (x_k)\ldots(x_n)f(a_1', \ldots, a_{k-1}', x_k, \ldots, x_n) \in \\
\in ((x_k \in A_k)\ldots(x_n \in A_n)A_{n+1})(x_1:=a_1)\ldots(x_{k-1}:=a_{k-1})
\]

For \(k = 1 \), it follows from judge-cat-4 and judge-cat-1. Suppose the judgement is correct for \(k \), we want to prove the corresponding judgement with \(k+1 \) instead of \(k \). Put

\[
x = x_1, \ldots, x_{k-1}
\]

\[
a = a_1, \ldots, a_{k-1}
\]

\[
a' = a_1', \ldots, a_{k-1}'
\]

\[
b = (x_{k+1})\ldots(x_n)f(a, x_k, \ldots, x_n)
\]

\[
b' = (x_{k+1})\ldots(x_n)f(a', x_k, \ldots, x_n)
\]

\[
B = (x_{k+1} \in A_k)\ldots(x_n \in A_n)A_{n+1}
\]

\[
B = B(x:=a)
\]
$B' = B(x:=a')$

We have

$$a_k \in A_k, \quad a_k' \in A_k', \quad a_k = a_k' \in A_k$$

(1)

$$(x_k)b = (x_k)b' \in (x_k \in A_k)B$$

(2)

By lemma A.8 on page 72

$B \text{ cat } (x_1 \in A_1, \ldots, x_k \in A_k)$

Thus, by lemma A.6 on page 66

$B \text{ cat } (x_k \in A_k)$

Hence, by judge-cat-5',

$$\text{app}((x_k)b, a_k) = \text{app}((x_k)b', a_k') \in B(x_k := a_k)$$

(3)

By repeated use of judge-cat-4

- $(x_{k+1})\ldots(x_n)f(x_1, \ldots, x_n) \in B$ \((x_1 \in A_1, \ldots, x_k \in A_k)$$

Hence, by lemma A.6 on page 66

$$b \in B (x_k \in A_k)$$

(4)

$$b' \in B' (x_k \in A_k')$$

(5)

Now, by lemma A.8 on page 72, the judgements (with no hidden assumptions)

- $B \text{ cat } (x_1 \in A_1, \ldots, x_k \in A_k)$

- $A_k \text{ cat } (x_1 \in A_1, \ldots, x_{k-1} \in A_{k-1})$

have derivations using rules up to the "f-rule". Hence, by assumption, the lemma holds, and we get

$$B = B' (x_k \in A_k)$$

(6)

$$A_k = A_k'$$

(7)

Observe that a_1, a_1', \ldots, may depend on hidden assumptions, $u \in F$, which in that case will occur as assumptions in $1,2,3,4,5,6,7$.

Also, by lemma A.6, $A_k \text{ cat } A_k'$ cat. Hence, by lemma A.5 on page 65 and =7, we get

$$b' \in B (x_k \in A_k)$$

Hence

$$b, b' \in B (x_k \in A_k)$$
and by **judge-cat-6-calc**

- \(\text{app}((x_k)b,a_k) = b(x_k := a_k) \in B(x_k := a_k) \)
- \(\text{app}((x_k)b',a_k') = b'(x_k := a_k') \in B(x_k := a_k) \)

Hence, by =3 and =5

\(b(x_k := a_k) = b'(x_k := a_k') \in B(x_k := a_k) \)

which is what we claimed. Hence, the induction step is completed, and we get

\[f(a_1, \ldots, a_n) = f(a'_1, \ldots, a'_n) \in A_{n+1} \]

The second step in the proof is to prove that the "f-rule" preserves weak congruence. Thus, assume

- \(e \in E \ (u \in F) \)
- \(e' \in E \ (u \in F) \)
- \(e = e' \in E \ (u \in F) \)

and assume

\[\frac{a_1 \in A_1(z \in E, y \in D), \ldots, a_n \in A_n(z \in E, y \in D)}{f(a_1, \ldots, a_n) \in A_{n+1}(z \in E, y \in D)} \]

is a correct instance of the "f-rule", i.e.

\[A_i \equiv A_i(x_1 := a_1) \ldots (x_{i-1} := a_{i-1}) \text{ for } i = 1, \ldots, n \]

Assume that the premisses satisfy the "congruence conditions", i.e. for \(i = 1, \ldots, n+1 \)

1. \(a_i(z := e) = a_i(z := e') \in A_i(z := e) \ (u \in F, y \in D(z := e)) \)

and for \(k = 1, \ldots, r \)

2. \(D_k(z := e) = D_k(z := e') \ (u \in F, y_1 \in D_1(z := e), \ldots, y_{k-1} \in D_{k-1}(z := e)) \)

By lemma A.6, we have, for \(i = 1, \ldots, n \)

3. \(a_i(z := e) \in A_i(z := e) \ (u \in F, y \in D(z := e)) \)

4. \(a_i(z := e') \in A_i(z := e') \ (u \in F, y \in D(z := e')) \)

We want to prove that \(e' \) in the assumption list of 4 above may be replaced by \(e \). Since the premisses are correct, it follows from lemma A.1 on page 62 that for \(k = 1, \ldots, r \)
By lemma A.6, for \(k = 1, \ldots, r \)

5. \(D_k(z:=e) \text{ cat } (u \in F, y_1 \in D_1(z:=e), \ldots, y_{k-1} \in D_{k-1}(z:=e)) \)

6. \(D_k(z:=e') \text{ cat } (u \in F, y_1 \in D_1(z:=e'), \ldots, y_{k-1} \in D_{k-1}(z:=e')) \)

Thus, by 2, 5, 6 and lemma A.5 on page 65, for \(i = 1, \ldots, n \)

7. \(a_i(z:=e') \in A_i(z:=e') \text{ (u \in F, y \in D(z:=e))} \)

Finally, 1, 3, 7 and the "equality f-rule" proved above give

\[
\begin{align*}
& f(a_1(z:=e), \ldots, a_n(z:=e)) = f(a_1(z:=e'), \ldots, a_n(z:=e')) \\
& \in A_{n+1}(z:=e) \text{ (u \in F, y \in D(z:=e))}
\end{align*}
\]

(lemma A.9)

Lemma A.10 (Reversed rule for categories) If

\((x \in A) B \text{ cat } \)

then

\(B \text{ cat } (x \in A) \)

Proof We prove the statement by induction on the derivation. It is sufficient to take care of judge-assumption-addition and to prove that judge-cat-2 is not applicable.

judge-assumption-addition

\[
\begin{align*}
& E \text{ cat }, (x \in A) B \text{ cat } \\
& \frac{}{(x \in A) B \text{ cat } (z \in E)}
\end{align*}
\]

By induction

\(B \text{ cat } (x \in A) \)

Thus, by lemma A.2 on page 63

\(B \text{ cat } (z \in E, x \in A) \)

which is what we had to prove.

judge-cat-2

By an easy induction \((x \in A) B \in C \) is never correct, and hence \((x \in A) B \in set \) is never correct.
Lemma A.11 (Equality and membership) The following is true

- $a \in A \implies A \text{ cat}$
- $a = b \in A \implies A \text{ cat}, a \in A$, $b \in A$
- $A = B \implies A \text{ cat}, B \text{ cat}$

Proof By induction.

judge-cat-3’

\[
\frac{A = A', B = B' (x \in A)}{\text{(x \in A)B} = (x \in A')B'}
\]

By induction, we get $B \text{ cat } (x \in A)$ and hence by **judge-cat-3**

\[
(x \in A)B \text{ cat}
\]

Also by induction

- $B' \text{ cat } (x \in A)$
- $A \text{ cat}$
- $A' \text{ cat}$

Hence, by **lemma A.5** on page 65

$B' \text{ cat } (x \in A')$

and then, by **judge-cat-3**

\[
(x \in A')B' \text{ cat}
\]

judge-cat-5

\[
\frac{B \text{ cat } (x \in A), a \in A, b \in (x \in A)B}{\text{app}(b,a) \in B(x:=a)}
\]

By **lemma A.6** on page 66, $B(x:=a) \text{ cat}$.

judge-cat-5’

\[
\frac{B \text{ cat } x \in A, a = a' \in A, b = b' \in (x \in A)B}{\text{app}(b,a) = \text{app}(b',a') \in B(x:=a)}
\]

By induction
A, a' ∈ A, b, b' ∈ (x ∈ A)B

As above B(x:=a) cat, and by judge-cat-5

app(b,a) ∈ B(x:=a), app(b',a') ∈ B(x:=a')

Now, by lemma A.9, B(x:=a) = B(x:=a') so that we get the result by using =7.

judge-cat-6-calc

\[
\frac{a \in A, b \in B (x \in A)}{\text{app}((x)b,a) = b(x:=a) \in B(x:=a)}
\]

By induction, we have B cat (x ∈ A). Hence, by lemma A.6 B(x:=a) cat.

By judge-cat-4 and judge-cat-5

app((x)b,a) ∈ B(x:=a)

Finally, by lemma A.6

b(x:=a) ∈ B(x:=a)

The rest of the rules are easily checked.

□ (lemma A.11)

Lemma A.12 (Equals for equals in assumptions) Suppose

- \(JUDGE (x_1 \in A_1, \ldots, x_n \in A_n, y \in D) \)
- \(A_1 = A_1' \)
- \(A_2 = A_2' \ (x_1 \in A_1) \)
- \(\ldots \)
- \(A_n = A_n' \ (x_1 \in A_1, \ldots, x_{n-1} \in A_{n-1}) \)

Then

\(JUDGE (x_1 \in A_1', \ldots, x_n \in A_n', y \in D) \)

PROOF A direct consequence of lemma A.11 and lemma A.5 on page 65.

□ (lemma A.12)

Lemma A.13 (Congruence) Substitution obeys the following laws
\[\bullet \ e = e' \in \textbf{E} \ (u \in \textbf{F}, \ B \text{ cat } (z \in \textbf{E}, \ y \in \textbf{D}) \implies \\
B(z := e) = B(z := e') (u \in \textbf{F}, \ y \in \textbf{D}(z := e)) \]

\[\bullet \ e = e' \in \textbf{E} \ (u \in \textbf{F}), \ b \in B \ (z \in \textbf{E}, \ y \in \textbf{D}) \implies \\
b(z := e) = b(z := e') \in B(z := e) (u \in \textbf{F}, \ y \in \textbf{D}(z := e)) \]

PROOF A consequence of **lemma A.11** and **lemma A.9** on page 74.

\[\Box \text{ (lemma A.13)} \]

Lemma A.14 (Equality of categories) If

\[C = (x \in A)B \]

then \(C \) may be represented as \((x \in A')B' \), where

\[A = A' \text{ and } B = B' \ (x \in A) \]

PROOF We show the following by induction on the correctness proof:

If \((x \in A)B = C \) or if \(C = (x \in A)B \)

then

\[C \text{ may be represented as } (x \in A')B' \]

where \(A = A' \) and \(B = B' \ (x \in A) \)

We only have to check the rules \(=2, =4, =6, \text{ judge-assumption-addition, judge-cat-2'}, \text{ and judge-cat-3'}. \) The rules \(=4 \) and \(\text{ judge-cat-3'}. \) are trivially checked.

\(=2 \)

\[\frac{(x \in A)B \text{ cat}}{(x \in A)B = (x \in A)B} \]

By **lemma A.10** on page 78, we have \(B \text{ cat } (x \in A) \) and by **lemma A.1** on page 62 \(A \text{ cat}. \) Hence, by \(=2, \ A = A \) and \(B = B \ (x \in A) \).

\(=6 \)

We have two possibilities, handled in the same way. One of them is

\[\frac{(x \in A)B = D \ , \ D = C}{(x \in A)B = C} \]

By induction, \(D \) may be represented as

\[(x \in A')B' \]
where

\[A = A' \text{ and } B = B' \quad (x \in A) \]

Hence, also by induction, \(C \) may be represented as

\[(x \in A'')B'' \]

where

\[A' = A'' \text{ and } B' = B'' \quad (x \in A') \]

By lemma A.12

\[B' = B'' \quad (x \in A) \]

Thus, by =6

\[A = A'' \text{ and } B = B'' \quad (x \in A) \]

judge-assumption-addition

We have two possibilities, handled in the same way. One of them is

\[
\begin{array}{c}
\text{E cat, } C = (x \in A)B \\
\hline
C = (x \in A)B \quad (z \in E)
\end{array}
\]

By induction \(C \equiv (x \in A')B' \), where

\[
A = A' \\
B = B' \quad (x \in A)
\]

Thus, by lemma A.2

\[
A = A' \quad (z \in E) \\
B = B' \quad (z \in E, x \in A)
\]

judge-cat-2'

By an easy induction \((x \in A)B = C \in D\) is never correct, and hence \((x \in A)B = C \in \text{set}\) is never correct.

\(\square\) (lemma A.14)

Lemma A.15 (Parameters of forms) We have the following "reversed stability" of forms for correct judgements

- \((z)b \in (x \in A)B \implies b \in B \quad (z \in A)\)
- \(s(a) \in C \implies a \in N\)
* \(\lambda(A,B,b) \in C \implies b \in (x \in A)app(B,x) \), \(C = \Pi(A,B) \)
* \(\Pi(A,B) \in C \implies A \in \text{set}, B \in (x \in A)\text{set} \)
* \(\Pi(A,B) \text{ cat} \implies A \in \text{set}, B \in (x \in A)\text{set} \)
* \(Eq(A,a,b) \in C \implies A \in \text{set}, a \in A, b \in A \)
* \(Eq(A,a,b) \text{ cat} \implies A \in \text{set}, a \in A, b \in A \)
* \(id(A,a) \in C \implies a \in A, C = Eq(A,a,a) \)
* \(\pi(a,b) \in C \implies a \in U, b \in (x \in T(a))U \)
* \(eq(a,b,c) \in C \implies a \in U, b \in T(a), c \in T(a) \)

Proof By induction on the proof of a judgement. We consider the form \((x)b\).
All the other forms are trivially handled. (Note that, if the induction hypothesis
for \(s\) had been
\[
 s(a) \in N \implies a \in N
\]
then the rule \(=7\) would create problems.) The judgement \((x)b \in (x \in A)B\) is
proved by one of the rules \(=7\), \textit{judge-assumption-addition}, \textit{judge-cat-4}.
Obviously, the conclusion follows if the last rule is used.

\[
 (=7)
 \begin{array}{c}
 (x)b \in C, C = (x \in A)B \\
 \hline
 (x)b \in (x \in A)B
 \end{array}
\]

By \textbf{lemma A.14}, \(C \) may be represented as
\[
 (x \in A')B'
\]
where
\[
 A = A' \text{ and } B = B' \text{ (} x \in A \text{)}
\]
By induction
\[
 b \in B' \text{ (} x \in A' \text{)}
\]
and \textbf{lemma A.12} gives
\[
 b \in B' \text{ (} x \in A \text{)}
\]
and finally, by \(=7\)
\[
 b \in B \text{ (} x \in A \text{)}
\]
judge-assumption-addition

\[
\frac{E \text{ cat }, (x)b \in (x \in A)B}{(x)b \in (x \in A)B (z \in E)}
\]

By induction

\[b \in B (x \in A)\]

Hence, by lemma A.2

\[b \in B (z \in E, x \in A)\]

\[\square\] (lemma A.15)

Lemma A.16 (Equality rules) Consider a rule listed in lemma A.7. It is of the following form

\[
\frac{a_1 \in A_1, \ldots, a_n \in A_n}{f(a_1, \ldots, a_n) \in A_{n+1}}
\]

It satisfies

\[a_1 = a_1' \in A_1, \ldots, a_n = a_n' \in A_n \implies f(a_1, \ldots, a_n) = f(a_1', \ldots, a_n') \in A_{n+1}\]

PROOF According to lemma A.11 on page 79 and the first part of the proof of lemma A.9 on page 74.

\[\square\] (lemma A.16)

Lemma A.17 (Consistency) We have the following "consistency" properties

- \(\Pi(A, B) = \Pi(A', B') \implies A = A' \in \text{set} \), \(B = B' \in (x \in A)\text{set}\)
- \(\text{Eq}(A, a, b) = \text{Eq}(A', a', b') \implies A = A' \in \text{set} \), \(a = a' \in A \), \(b = b' \in A\)

PROOF With a technique similar to the one used in [Coq90].

\[\square\] (lemma A.17)

Lemma A.18 (Reduction implies equality) Suppose that \(a \in A\) or \(a \text{ cat}\) is a correct judgement and that \(\alpha \rightarrow b\). Then \(a = b \in A\) or \(a = b\), respectively.
Proof It is sufficient to prove the statement for \(a \rightarrow b \). We make the following induction hypothesis on correct judgements:

For every \(\text{JUDGE} \ (x_1 \in A_1, \ldots, x_n \in A_n) \) we require the assumptions to satisfy

\[
A_i \rightarrow A'_i \quad \Rightarrow \quad A_i = A'_i \ (x_1 \in A_1, \ldots, x_{i-1} \in A_{i-1})
\]

for \(1 \leq i \leq n \)

Furthermore, if "JUDGE" is \("a \in A" \) or "a cat" then we require \(a \rightarrow b \) to imply \(a = b \in A \ (x_1 \in A_1, \ldots, x_n \in A_n) \) or \(a = b \) \((x_1 \in A_1, \ldots, x_n \in A_n) \), respectively. For the other two (equality) judgement forms there is no extra requirement.

The rules \textbf{judge-cat-2} and \textbf{judge-cat-4} follow by induction using \textbf{judge-cat-2'} and \textbf{judge-cat-4'}, respectively. Using \textbf{lemma A.16} on page 84 the same argument applies to the rest of the relevant "introduction"-rules. In the following we only consider the rules that not trivially preserve the requirements.

\[=7\]

In this case, if \(a \rightarrow b \) then, by induction, \(a = b \in A \) and hence by \(=8\) we get \(a = b \in B \).

\textbf{judge-assumption}. Since \(x \) has no reductions, we only have to check that the extended assumption list satisfies the requirements. However, this follows directly by using the induction hypothesis on \(A \).

\textbf{judge-assumption-addition}. Basically the same argument as in \textbf{judge-assumption} handles this case.

\textbf{judge-cat-3}

The assumption list has shrunk, so there is no trouble with that. We have the following possibilities for the reduction

1. \((x \in A)B \rightarrow (x \in A')B \), where \(A \rightarrow A' \)
2. \((x \in A)B \rightarrow (x \in A)B' \), where \(B \rightarrow B' \)

Case 1 follows by the induction hypothesis and \(=2 \). The same goes for 2, noting that \(A \text{ cat} \) by \textbf{lemma A.1} on page 62 so that \(=2 \) gives \(A = A \).

\textbf{judge-cat-5}

We have the following possibilities for the reduction

1. \(\text{app}(b,a) \rightarrow \text{app}(b',a) \), where \(b \rightarrow b' \)
2. \(\text{app}(b,a) \rightarrow \text{app}(b,a') \), where \(a \rightarrow a' \)
3. \(b \equiv (x)c \text{ and } \text{app}(x)c, a \longrightarrow c(x:=a) \)

Case 1 and 2 follow by induction, using judge-cat-5'. In case 3, we know that \((x)c \in (x \in A)B\) and hence, by lemma A.15, \(c \in B (x \in A)\). Thus, by judge-cat-6-calc, \(\text{app}(\langle x \rangle)c, a = c(x:=a) \in B(x:=a) \).

judge-N-elim

We have the following possibilities for the reduction

1. \(\text{N-elim}(C,a,b,d) \longrightarrow \text{N-elim}(C',a,b,d) \), where \(C \longrightarrow C' \)
2. \(\text{N-elim}(C,a,b,d) \longrightarrow \text{N-elim}(C,a',b',d) \), where \(a \longrightarrow a' \)
3. \(\text{N-elim}(C,a,b,d) \longrightarrow \text{N-elim}(C,a,b',d') \), where \(b \longrightarrow b' \)
4. \(\text{N-elim}(C,a,b,d) \longrightarrow \text{N-elim}(C,a,b,d') \), where \(d \longrightarrow d' \)
5. \(a \equiv 0 \text{ and } \text{N-elim}(C,0,b,d) \longrightarrow b \)
6. \(a \equiv s(e) \text{ and } \text{N-elim}(C,s(e),b,d) \longrightarrow \text{app}(\text{app}(d,e),\text{N-elim}(C,e,b,d)) \)

The cases 1 - 4 follow by induction, using lemma A.16. In the case of 5, the conclusion follows from judge-N-0-calc. In the case of 6, we use lemma A.15 to deduce that \(e \in N \) and hence judge-N-s-calc gives the result.

judge-II-elim

We have the following possibilities for the reduction

1. \(\text{II-elim}(A,B,C,a,d) \longrightarrow \text{II-elim}(A',B,C,a,d) \), where \(A \longrightarrow A' \)
2. \(\text{II-elim}(A,B,C,a,d) \longrightarrow \text{II-elim}(A,B',C,a,d) \), where \(B \longrightarrow B' \)
3. \(\text{II-elim}(A,B,C,a,d) \longrightarrow \text{II-elim}(A,B,C',a,d) \), where \(C \longrightarrow C' \)
4. \(\text{II-elim}(A,B,C,a,d) \longrightarrow \text{II-elim}(A,B,C,a',d) \), where \(a \longrightarrow a' \)
5. \(\text{II-elim}(A,B,C,a,d) \longrightarrow \text{II-elim}(A,B,C,a,d') \), where \(d \longrightarrow d' \)
6. \(a \equiv \lambda(A',B',b) \text{ and } \text{II-elim}(A,B,C,a,d) \longrightarrow \text{app}(d,b) \)

The cases 1 - 5 follow by induction, using lemma A.16. In the case of 6, \(\lambda(A',B',b) \in \Pi(A,B) \) and we use lemma A.15 to deduce that

\[
\begin{align*}
b & \in (x \in A')\text{app}(B') \\
\Pi(A',B') & = \Pi(A,B)
\end{align*}
\]

By lemma A.17

\[
A = A' \in \text{set} \text{, } B = B' \in (x \in A)\text{set}
\]

and hence, by lemma A.16

\[
\lambda(A,B,b) = \lambda(A',B',b) \in \Pi(A,B)
\]
so that

\[\Pi\text{-elim}(A, B, C, a, d) \equiv \Pi\text{-elim}(A, B, C, \lambda(A', B', b), d) = \]
\[= \Pi\text{-elim}(A, B, C, \lambda(A, B, b), d) \in \text{app}(C, a) \]
\[\Pi\text{-elim}(A, B, C, \lambda(A, B, b), d) = \text{app}(d, b) \in \text{app}(C, \lambda(A, B, b)) \]

By **judge-cat-5'**

\[\text{app}(C, \lambda(A, B, b)) = \text{app}(C, \lambda(A', B', b)) \in \text{set} \]

hence by **judge-cat-2'**, =8 and =5

\[\Pi\text{-elim}(A, B, C, a, d) = \text{app}(d, b) \in \text{app}(C, a) \]

judge-Eq-elim

We have the following possibilities for the reduction

1. Eq-elim(A,a,b,C,g,d) \rightarrow Eq-elim(A',a,b,C,g,d) , where A \rightarrow A'
2. Eq-elim(A,a,b,C,g,d) \rightarrow Eq-elim(A,a',b,C,g,d) , where a \rightarrow a'
3. Eq-elim(A,a,b,C,g,d) \rightarrow Eq-elim(A,a,b',C,g,d) , where b \rightarrow b'
4. Eq-elim(A,a,b,C,g,d) \rightarrow Eq-elim(A,a,b,C',g,d) , where C \rightarrow C'
5. Eq-elim(A,a,b,C,g,d) \rightarrow Eq-elim(A,a,b,C,g',d) , where g \rightarrow g'
6. Eq-elim(A,a,b,C,g,d) \rightarrow Eq-elim(A,a,b,C,d',g) , where d \rightarrow d'
7. g \equiv \text{id}(A',c) \text{ and } Eq-elim(A,a,b,C,g,d) \rightarrow \text{app}(d,e)

The cases 1 - 6 follow by induction, using **lemma A.16**. In the case of 7

\[\text{id}(A',e) \in \text{Eq}(A,a,b) \]

and hence, by **lemma A.15**

\[e \in A' , \text{ Eq}(A',e,e) = \text{Eq}(A,a,b) \]

Thus, by **lemma A.17**

\[A' = A \in \text{set} , e = a \in A , e = b \in A \]

so that by **lemma A.16**

\[\text{Eq-elim}(A,a,b,C,g,d) \equiv \text{Eq-elim}(A,a,b,C,\text{id}(A',e),d) = \]
\[= \text{Eq-elim}(A,e,e,C,\text{id}(A,e) \in \text{app}(\text{app}(C,a),b),g) \]
\[\text{Eq-elim}(A,e,e,C,\text{id}(A,e) = \text{app}(d,e) \in \text{app}(\text{app}(C,e),e,\text{id}(A,e))) \]

Using **judge-cat-5'** repeatedly, we get

\[\text{app}(\text{app}(\text{app}(C,a),b),g) = \text{app}(\text{app}(\text{app}(C,e),e,\text{id}(A,e))) \in \text{set} \]
hence by judge-cat-2', =8 and =5

\[\text{Eq-elim}(A,a,b,C,g,d) = \text{app}(d,b) \in \text{app}([\text{app}(C,a),b],g) \]

judge-T-U

We have the following possibilities for the reduction

1. \(T(a) \rightarrow T(a') \), where \(a \rightarrow a' \)
2. \(a \equiv n \) and \(T(a) \rightarrow N \)
3. \(a \equiv \pi(a,b) \) and \(T(a) \rightarrow \Pi(T(a),(x)T(\text{app}(b,x))) \)
4. \(a \equiv \text{eq}(b,c,d) \) and \(T(a) \rightarrow \text{Eq}(T(b),c,d) \)

Case 1 follows by induction, using lemma A.16. Case 2 is trivial. In the case of 3

\[\pi(a,b) \in U \]

and hence, by lemma A.15

\[a \in U , \ b \in (x \in T(a))U \]

so that

\[T(a) \equiv T(\pi(a,b)) = \Pi(T(a),(x)T(\text{app}(b,x))) \in \text{set} \]

In the case of 4

\[\text{eq}(b,c,d) \in U \]

and hence, by lemma A.15

\[b \in U , \ c \in T(a) , \ d \in T(a) \]

so that

\[T(a) \equiv T(\text{eq}(b,c,d)) = \text{Eq}(T(b),c,d) \in \text{set} \]

The rest of the relevant rules are all on "introduction" form and follow by induction using lemma A.16 on page 84.

\[\square \] (lemma A.18)

Lemma A.19 (Reduction and membership) Suppose that

\[a \in A \) (or a cat) \]

and that

\[a \rightarrow b \]
then
\[b \in A \text{ (or } b \text{ cat)} \]

PROOF A direct consequence of lemma A.18 and lemma A.11.

\[\square \] (lemma A.19)

Lemma A.20 (Conversion and Equality) *We have the following*

- \(A \text{ cat, } B \text{ cat, } A \text{ conv } B \iff A = B \)
- \(a \in A, \ b \in A, \ a \text{ conv } b \iff a = b \in A \)

PROOF

\[\implies : \]
A direct consequence of lemma A.18 and lemma 2.3.1 on page 12.

\[\iff : \]
By lemma A.11 and an easy induction.

\[\square \] (lemma A.20)
Acknowledgement

We are indebted to Per Martin-Löf and Dag Prawitz, who explained the principles for establishing a normalization proof.
References

